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EXERCISE 9

Refer to Figure 9.8. If R = 1 MQ and the maximum output of the op-amp is 200 mV, what
is the maximum current I?

The output of op-amp 2 is given by

R,

Vow.2= (1 + lo_k) Vou,r (V) (23)

where V,,, , is the output of op-amp 1.

EXERCISE 10

Assuming that K=5V and op-amp 1 output ranges from 0 to 200 mV, show that the
output of op-amp 2 ranges from 0 to +5 V provided that R, is 240 kQ. (Note only one half
of the analog range is utilized. This is because of the need to adjust the output of op-amp
2 to zero when the input to op-amp 1 is the dark current.)

Bench Testing Install the appropriate resistance R,. In the circuit shown in Figure 9.12,
replace the DAC output with the 3-V power supply and 10-kQ potentiometer shown in
Figure 9.8a; replace the ADC input with a voltmeter. With the dark current as the input to
op-amp 1, set the outputs of 1 and 2 to zero in the order that they are numbered by
adjusting the 25-kQ potentiometer for each op-amp. The potentiometer is shown in Figure
9.8b. By using the 546-nm spectral line, say, with the lamp-phototube separation such that
the maximum output of op-amp 1 is 200 mV, vary the voltage to the phototube and observe
the output of 2. If the circuit functions properly, connect it to the computer as is shown in
Figure 9.12.

MEASUREMENTS AND SOFTWARE

Some possible things to do are the following.

1. Write software that increments the DAC output, reads the ADC input for each DAC
output, and stores each pair of values.

2. Run the software for each spectral line, and instruct the computer to plot an I-V
characteristic curve and to determine the stopping potential.

3. Write software that plots stopping potential versus frequency, analyzes the data, and
prints a hard copy.

10. DIFFRACTION OF X RAYS AND MICROWAVES BY PERIODIC

STRUCTURES: BRAGG SPECTROSCOPY

Historical Note

The 1914 Nobel prize in Physics was awarded to Max Von Laue, Germany
For his discovery of the diffraction of X-rays by crystals.
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The 1915 Nobel prize in Physics was awarded jointly to Sir William Henry Bragg, and his son,
Sir William Lawrence Bragg, both of Great Britain

For their serivces in the analysis of crystal structures by means of X-rays.

APPARATUS

X-ray diffractometer system (e.g., Tel-X-Ometer crystallography system, available from PASCO
Scientific) which includes:

Ratemeter or scaler
Geiger—Mueller (G—M) tube
Motor drive
X-ray tube with copper anode
Scatter shield
NaCl and KCl in powder and single-crystal forms
Ni foil
Microwave Bragg diffraction apparatus (available from Sargent-Welch Scientific Co.) which
includes:
Goniometer
Cubic lattice of Al spheres in a foam plastic matrix
Microwave transmitter and receiver

OBJECTIVES

To obtain and analyze single-"'crystal” data from the microwave diffraction apparatus as an
analog to the Bragg scattering of x rays.

To obtain and analyze x-ray Bragg reflections from single alkali—halide crystals of known
orientation.

To obtain and analyze x-ray reflections from a powder sample.

To become acquainted with some aspects of crystal symmetry, particularly as applied to the
cubic lattices.

To understand the physical basis of the Bragg reflections from crystal planes as predicted
by the Bragg condition and a consideration of the structure factor.

KEY CONCEPTS

Bragg diffraction (scattering) Structure factor

Bravais lattice Form factor

Primitive cell Bremsstrahlung

Basis Characteristic radiation

Miller indices Absorption edge

Fourier analysis Powder (Debye—~Scherrer) method

Reciprocal lattice vector

REFERENCES

1. C. Kittel, Introduction to Solid State Physics, 6th ed., Wiley, New York, 1985. Chapters 2 and 3
provide a concise, readable introduction to crystal geometry, the reciprocal lattice, and
Bragg diffraction.
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2. R Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2d ed.,
Wiley, New York, 1985. Section 9 contains a discussion of the production and nomenclature
of atomic x-ray emission lines.

3. B. E. Warren, X-ray Diffraction, Addison-Wesley, Reading, MA, 1969. Discusses crystal
symmetry and diffraction techniques.

4. P. ). Barry and A. D. Brothers, Am. ]J. Phys. 54, 186 (1986). Describes a technique for
interfacing a diffractometer system with a microcomputer for an automated data acquisition
system.

5. International Tables for X-Ray Crystallography, Vol. 3, Reidel, Boston, 1962. Contains pertinent
numerical data such as wavelengths of characteristic x-ray emission lines and absorption
edges and atomic form factors.

6. L. V. Azaroff and M. |. Buerger, The Powder Method in X-Ray Crystallography, McGraw-Hill, New
York, 1958.

7. H. F. Meiners (ed.), Physics Demonstration Experiments, Vol. 2, Ronald Press, New York, 1970.
The microwave scattering experiment discussed below is based on the arrangement
described in Chapter 33, Section 7.15, which features apparatus developed by H. F.
Meiners.

INTRODUCTION

When electromagnetic radiation is incident upon a periodic array of scattering centers as in
Figure 10.1a, there are certain discrete directions for the incident ray that result in strong
reflections; this is because of constructive interference of the radiation scattered from each
of the centers. The directions for which these strong reflections occur are related through the
Bragg law, described in the discussion that follows, to the geometry of the arrangement.
Measurements of the angular positions and intensities of these Bragg reflections can be used
to deduce the arrangement and spacings of the scatterers. If the scatterers are the atoms or
molecules of a crystal of unknown geometry and the radiation is a monochromatic x-ray
beam of known wavelength, measurements of the angular distribution and intensities of the
reflected beams can be used to determine the crystallographic symmetry and interatomic
spacings. Conversely, a crystal with a known structure may be used to spectrally analyze an
x-ray beam or as an x-ray monochromator.

X-ray scattering, sometimes referred to as Bragg diffraction, is widely used in research
laboratories around the world. One recent estimate puts the number of x-ray diffraction

FIGURE 10.1 (a) Periodic array of scatterers. (b) Periodic array with atoms
"misaligned.”
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users worldwide at about 25 000, one-third of which are in the United States. In addition to
basic crystallographic structure analysis, diffraction techniques are also currently useful in
such applications as the qualitative and quantitative analysis of material composition, the
analysis of stress/strain conditions within a given polycrystalline material, and the study of
phase transitions at elevated temperatures. X-ray scattering is also currently being used in
the study of macromolecular systems of interest to molecular biologists. Researchers have,
for example, studied diffraction patterns from magnetically oriented solutions of macro-
molecular assemblies that yield subcellular structural information; “movies” of proteins in
motion have been produced using high-intensity nanosecond pulses of x rays; the three-
dimensional internal structure of complex organic molecules is also currently being probed
with x rays.

The analysis of the x-ray diffraction patterns to be observed in this experiment is based
on the Bragg law of equation 2, which follows. We derive this law first from a simplified,
heuristic, two-dimensional viewpoint, following which is a more general (and somewhat
more complex) three-dimensional treatment.

The Bragg Law in Two Dimensions

The Bragg law may be derived in a simple way by considering the reflection (or scattering)
of x rays from the planes of atoms indicated in Figure 10.1a. If the x rays are treated
classically as monochromatic electromagnetic waves of wavelength 4, then the reflections
from successive planes of atoms will interfere constructively if the total difference é in
optical path lengths for waves reflected from planes 1 and 2 is an integral number of
wavelengths. If the spacing between the indicated planes is d and the incident beam makes
an angle 0 with these planes, then the path length difference is given by

0 =d(sin 6 +sin 6°) (m) (1

If we assume that @ = 6’, as is the case for specular reflection of visible radiation from
dielectric or metallic surfaces, then the condition for constructive interference is

2d sin @ =ni (m) (2)

where n is a positive integer. Thus, we expect reflections from this family of planes whenever
6 =6’ and the Bragg law of equation 2 is satisfied.

Note that although we assumed 8 = 8’, this condition emerges as a natural consequence
of the requirement that, for a Bragg reflection, atoms within a given plane, as well as atoms
in different planes, must scatter constructively. It should also be noted that the Bragg law
is a consequence only of the spatial periodicity of the scatterers in a direction perpendicular
to the reflecting planes and does not depend on the alignment of the atoms of plane 1 with
those of plane 2.

EXERCISE 1

Show that if the Bragg law is satisfied for the situation in Figure 10.154, the radiation
scattered from atoms A, and A, will constructively interfere even though they are not
*“aligned” in a direction perpendicular to planes 1 and 2 as in Figure 10.1a.

Three-Dimensional Description: Bravais Lattices and Miller Indices

The crystalline /attices discussed above contain several families of parallel planes in addition
to the ones pictured in Figure 10.1a, each with its own orientation and spacing (e.g., those
parallel to planes 3 and 4 in Figure 10.15), which have the potential to produce Bragg
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reflections if equation 2 is satisfied. Additionally, if these lattices are considered as
representing an arrangement of scatterers that exhibits periodicity in each of three dimen-
sions, the enumeration of all the possible reflections from every family of planes is a
formidable task that requires an understanding of the geometry of crystals in three
dimensions.

The structure of a crystalline arrangement of atoms or molecules is described by
specifying a basic repetitive unit of the lattice, the unit cell. The fourteen fundamental types
of three-dimensional crystal lattices, the so-called Bravais lattices, are divided into seven
crystal systems according to the geometry of the unit cell; these are listed in Table 10.1.
Figure 10.2a shows the cell geometry and location of the lattice points for each cell. The
choice of unit cell for each type of lattice is not unique; the cells shown here are the
conventional ones rather than the “primitive” cells of minimum volume. Each cell is
described conveniently in terms of a set of axes and three translation vectors a,, a,, and a,,
as pictured in Figure 10.2b. The restrictions on the angles «, f§, and y are given in the third
column of Table 10.1. The relationship between the translation vectors, the unit cell, and the
structure of the crystal is illustrated by Figure 10.2¢. As can be seen here, a cell can be
translated into any other cell in the lattice by a displacement of the form /a, + ma, + na,,
where /, m, and n are integers. To complete the specification of the crystal structure it is
necessary to specify a basis, that is, a group of atoms or molecules to be associated with
each point of the lattice.

Of particular interest in this experiment is the cubic system with its three lattice types
shown in the top row of Figure 10.2: simple cubic (sc), body-centered cubic (bcc), and
face-centered cubic (fcc). The unit cell for all three structures is a cube, but the location of
the lattice points within the cube differs for each structure. The NaCl crystal, an important
example of a crystal structure with an fcc lattice, can be described by choosing a basis
consisting of one Na* ion and one Cl~ ion. If an Na* ion is considered to be located at
each fcc lattice point, then a Cl~ ion is found displaced by a vector 1a, + ja, + 1a; with

TABLE 10.1 THE SEVEN CRYSTAL SYSTEMS

Number Restrictions on
of Conventional Cell
System Lattices Axes and Angles
Triclinic 1 ay #a; #a,
a#E R #EY
Monoclinic 2 a, # a, # a,
a=y=90"#§8
Orthorhombic 4 a, # a, # as
a=f=y=90°
Tetragonal 2 a,=a,#d,
a=f=y=90°
Cubic 3 a,=a,=4a;
a=Ff=y=90°
Trigonal | a =a,=d,
a=f=y<120° #90°
Hexagonal 1 ay=a,#a,
a=pf=90°
y=120°

Source: C. Kittel, Introduction to Solid State Physics, Sixth Edition,
Wiley, New York, 1986. Copyright © 1986, John Wiley & Sons,
Inc. Reprinted by permission.
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FIGURE 10.2 (a) Cell geometry for the Bravais lattices. (b) Translation vectors for the unit
cell. (c) Relationship between the unit cell, the translation vectors, and the
crystal structure.

respect to each Na*, where |a,| = |a,| = |a,| = a, the length of the side of the unit cube. This
arrangement is shown in Figure 10.3.

The standard way to specify the three-dimensional orientation of the planes of scatterers
associated with each possible Bragg reflection is by use of Miller indices. The Miller indices
specifying a plane such as the one depicted in Figure 10.4a is a set of three numbers (hk/)
determined from the intercepts of the plane on the three crystal axes. To find the indices for
a plane: (1) find the intercepts along each axis, expressed in units of the translation vector
parallel to that axis; (2) take the reciprocal of each of these three numbers; (3) multiply each
of the three numbers by the smallest integer necessary to clear the fractions. For the plane
of Figure 10.44, the intercepts are expressed in ordered triplet form as (322), from which the
reciprocals are (3, 3,1). Clearing fractions gives (233) as the Miller indices of this family of
planes.



186 EXPERIMENTS

FIGURE 10.3 The structure of an NaCl crystal.
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FIGURE 10.4 (a) Crystal plane shown with intercepts on axes. () Various planes within cubic unit cell.

EXERCISE 2

Determine the Miller indices for each of the planes shown with the cubic unit cell in Figure
10.4b. Note that for negative digits in a set of indices, minus signs are conventionally written
as dashes above the digit, for example, (1, T, 0).

Bragg Diffraction in Three Dimensions; Reciprocal Lattice Vectors

To predict the directions in which x rays will be Bragg reflected from a crystal of given
geometry, consider the situation of Figure 10.5, in whids the x-ray source emits a plane
wave with wave vector k (k = 2xn/4) of the form

E =E;*™=*  (N/C) 3)

which is incident upon the volume element of crystal d} located at r with respect to an
origin O. The electrons within this element respond to the wave by scattering radiation
which, at the detector, has an amplitude proportional to

E ™oy dV  (N/C) (4

where n(r) is the electron density in dV and k’ is the wave vector of the scattered wave.
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Source

Detector

FIGURE 10.5 X-ray plane wave scattered from a volume
element of a crystal.

Ignoring both the time dependence and the constant phase k'-ry, the behavior of the
amplitude of the scattered wave E, at the detector is given by

E, oc n(r) &~ X711 gy (5)

The amplitude of the radiation at the detector due to scattering by the entire crystal is
proportional to a quantity obtained by performing a volume integral of equation 5 over the
electron distribution of the crystal. The result is the scattering amplitude F:

F= J-an(r) ¢ —fiakt (6)

where Ak =k’ —Kk is called the scattering vector. To obtain from equation 6 the values of
Ak for which there will be strong Bragg reflections, it is necessary to Fourier analyze the
electron density function n(r). This is done by writing n(r) as a sum:

n(r) =Y nge/©  (m7? (D
G

where the ng values are possibly complex and the summation ranges over all possible
reciprocal lattice vectors G, which we now define as

G(hkl) = hb, + kb, +b;  (m™") (8

Each combination of integers (hk/) specifies a different G. The vectors b,, b,, and b;
constitute a basis for the reciprocal lattice and are defined in terms of the crystal translation
vectors

a, xa a, xa a, Xa
by=2g—— 32 bz=2ﬂ4 by=2n ——2—

(m™) 9

EXERCISE 3

Calculate the reciprocal lattice vectors G for a simple cubic lattice of side a. Verify that the
expansion of equation 7 for the function n(r), which repeats in each unit cell of Figure 10.2¢,
is simply the three-dimensional Fourier series representation of this function.
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EXERCISE 4

Show that, for the vectors b,, b,, and b, defined above, g, - b, = 276,;. Use this orthogonality
relationship to show that each reciprocal lattice vector G(hk!) is perpendicular to the set of
planes with Miller indices (hkl).

EXERCISE 5

Use the result of Exercise 4 to show that the spacing between planes (hkl) is given by
d(hkl) = 2n/|G(hkl)|. Calculate d(hkl) for a cubic lattice of side a.

We can invert the sum in equation 7 by the standard procedures of Fourier analysis to
obtain an expression for ng, the Fourier coefficient corresponding to G:

ne="Vz' J‘ dvVn(r)e7C”  (m™?) (10)

cell

where V. is the volume of the unit cell over which the integral is to be done.
Using the expansion of equation 7 for n(r) in the expression for the scattering amplitude
F of equation 6 gives us a useful form for F:

G
crystal

F=Y j 4V ng; &G -0 (11)

Each term in the above sum contains an exponential which, if its argument is nonzero,
oscillates in such a way that integrating over the crystal volume gives zero for that term.
Thus, the only way F can be nonzero, so that a reflection can occur, is if the scattering
vector Ak happens to equal one of the G values, making the exponential equal to unity for
one term of the sum. Hence, a necessary condition on Ak ( =k’ —k) for the occurrence of
a Bragg reflection is

Ak=G (m™") (12)

where G is any of the reciprocal lattice vectors defined by equation 8. If we limit our

FIGURE 10.6 Initial wave vector, final wave vector, and
the scattering vector for a Bragg
reflection.
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consideration to elastic (coherent) scattering in which the wavelength is unaltered, we h
the additional restriction ave
k'=k (m~ ‘} (13)

An example of a Bragg reflection satisfying the conditions of equations 12 and 13 g
illustrated in Figure 10.6, where G, the scattering vector for this reflection, is drawp
perpendicular to the reflecting plane (hk).

EXERCISE 6

Verify with the aid of Figure 10.6 that the two conditions for Bragg reflection cited above
imply 6 =60".

It is straightforward to show that the conditions expressed by equations 12 and 13 for

Bragg reflections imply the two-dimensional form of the specular reflection law of equation
2. Rewriting equation 12 as

K=k+G (m™) (14)
and taking the squared magnitude of both sides gives
k?=k*+G*+2%k*G (m™? (15)

Applying the condition of equation 13 and writing (with reference to Figure 10.6) k- G as
—kG sin 0 gives

2%sin6=G (m~Y) (16)

Recall that G can be any reciprocal lattice vector that is (according to the result of Exercise
4) perpendicular to the plane (hk!/) doing the reflecting, so that G = nG(hk/), where n is any
integer. Using the result of Exercise 5, we have

2n
d(hkl)

= G(hkl) =§ (m~Y) (17)

for the relationship between d(hkl) and G. Using this to eliminate G in equation 16 and
inserting the definition of the wave vector k yields the Bragg law

2 d(hkl) sin 6 = nA (m) (18)

as in equation 2 above.

The preceding discussion of the space and reciprocal lattices and their relationship to the
scattering amplitude not only yields a more general interpretation of the Bragg law, as
derived in a simple way from Figure 10.1, but also gives us information with regard to the
expected intensities of the reflections from different sets of planes (kk/). In particular, the
conditions cited above for Bragg reflections are necessary but not sufficient, and some of the
reflections permitted by equation 18 will be absent because of the possibility of destructive
interference between waves scattered by atoms in the same cell. The discussion of this
feature of Bragg reflection requires a further examination of the scattering amplitude of
equation 11 and a brief discussion of form and structure factors.
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Structure Factor and Form Factor

If equation 12 is satisfied so that for some G, Ak = G, then the exponential appearing in the
expression for the scattering amplitude F in equation 11 is just unity, and F (denoted by Fg
for this particular G) is then given by

Fe =fnc av (19)

where the integration is performed over the entire volume of the crystal. Substituting for ng,
the Fourier coefficient of n(r) given by equation 10, gives an expression for the scattering
amplitude in terms of the electron distribution within a single cell:

Fe= N[ j dV n(r) e ‘f‘G"):I (20)

cell

where N is the number of cells in the crystal and the expression within the square brackets
is called the structure factor S;. The electron density function n(r) is often most con-
veniently broken up into chunks associated with each of the atoms contained within the cell,
which is the region of integration in equation 20. If this is done, then this integral can be
expressed as a simple sum:

Fym NSgm N|:Z fe G ,] (21)

in which the f; are known as form factors for the atoms and the sum is over all atoms in
the cell located at positions r;; each f; is effectively a portion of the integral in equation 20
over the charge distribution associated with the ith atom. The value of Fg, for any G(hkl),
determines whether there will be a reflection corresponding to the atomic plane (hk/) and,
hence, to Ak = G(hkl).

EXERCISE 7

Using the conventional cubic cell, calculate G(hk/) from the definitions of equations 8 and
9. Evaluate Sg for the fcc lattice of single atoms, assuming identical form factors f; for all
atoms. Note that each conventional cell in the fcc lattice contains four atoms, so that Sg will
contain four terms. You should show that if h, k, and / are either all even or all odd, then
the structure factor for G(hkl/) will be nonzero, but that for other combinations of the
indices, S¢ will be zero. Reflections from a plane (hkl) that are permitted by the Bragg law
but for which the structure factor corresponding to G(hkl!) is zero will not be detected.

EXERCISE 8

KCl has the structure shown in Figure 10.3. The lattice is fcc with a basis consisting of one
K atom and one Cl atom; one pair of atoms is associated with each lattice site. Because K+
and CI~ have the same number of electrons, their form factors f are nearly equal and so
they appear as identical ions to an x-ray beam. Calculate the structure factors S¢ for this
crystal, keeping in mind that each unit cell now contains 8 ions. What additional restrictions
are placed on planes (hk/) that can produce Bragg reflections over and above those for a
general monatomic fec lattice considered in Exercise 7? Can you give a physical explanation
for the additional reflections that are now absent?
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Production of X Rays

In this set of experiments Bragg diffraction of both x rays and microwaves from periodic
structures will be studied. The production of microwaves is discussed in connection with
Experiment 2; here we give a brief account of the production the x rays we will use.

Figure 10.7a is a schematic representation of an x-ray tube. Electrons are emitted
thermionically from the heated cathode, which is maintained at a large potential difference
V with respect to the anode target. As these electrons impact the anode, x rays are emitted
with a spectral intensity distribution similar to the one shown in Figure 10.75. This spectrum
exhibits two main features:

(1) There is a broad continuous spectrum of radiation, referred to as bremsstrahlung,
caused by the sudden deceleration of the electrons as they impact the anode. (The word is
derived from the German words brems (braking) and strahlung (radiation).) This radiation
extends spectrally out to long wavelengths (low photon energies) with decreasing intensity
and down to a minimum wavelength A, = hc/Ve, which is the wavelength of a photon that
carries away all the kinetic energy of an electron incident on the anode. From the point of
view of x-ray diffraction, this component of the tube emission is often considered as
background.

(2) Superimposed on the bremsstrahlung continuum is the nearly monochromatic set of
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FIGURE 10.7 (a) Production of x rays. (b} Typical spectral intensity distribution of the output
of an x-ray tube. (c) Atomic transitions associated with the production of
characteristic radiation. (d) Energy-level diagram for a vacancy (hole) and the
allowed x-ray transitions.
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x-ray lines that reflect the atomic structure of the atoms of the anode. The mechanism for
the production of this characteristic radiation is suggested by Figure 10.7c. A high-energy
electron impacts the anode and knocks out an inner shell electron from an anode atom. An
x-ray photon is emitted when the vacancy thus created is filled by means of a downward
transition made by an electron in one of the higher energy shells. The process can be
represented on an energy diagram like that of Figure 10.7d, which represents the energy of
an atom with a vacancy in a particular shell along with transitions allowed by the selection
rules. The nomenclature for the various lines is derived from the initial and final states of
the transition, as is suggested by Figure 10.7¢. Note that the spin—orbit interaction, along
with other relativistic effects, creates a splitting of the energy levels of the various shells
according to the quantum number j, which indexes the total angular momentum. The line
K,, for example, is really a multiplet consisting of two lines (X, ,, K,,), which are seldom
resolved in x-ray diffraction work.

Because of its monochromatic nature, the characteristic radiation described above is
quite useful for x-ray diffraction. In this experiment you will use an anode made of Cu, for
which the important emission lines are K, (A = 0.154178 nm) and K} (4 = 0.139217 nm). The
wavelength given for the K, radiation is a weighted average for the doublet X, ,. The Kj
radiation from Cu is about six times weaker than the K, so that diffraction patterns can be
made easier to interpret if the K, is selectively filtered out. This can be done conveniently
for Cu K radiation by means of a foil made of Ni, which has an absorption edge (due to
photoelectric absorption) at 4 =0.148802 nm, so that wavelengths shorter than this are
selectively absorbed. A Ni foil with a *“thickness” of 19 mg/cm, for example, when used as
a filter for Cu K, will produce a beam with a K, component that is 500 times more intense
than the K.

EXPERIMENT

Microwave Bragg Diffraction

This part of the experiment is an investigation of scattering of microwaves with 1 =3 cm
from a cubic lattice of aluminum spheres as an analog to the diffraction of x rays from a
crystalline substance. The principles of operation of the reflex klystron and the diode
detector are discussed in connection with Experiment 2.

(a) Wavelength Measurement. After an appropriate warm-up period and with the
klystron transmitter and diode receiver configured as in Figure 10.8a4, adjust the repeller
voltage on the klystron for a peak reading on the receiver meter. With the units arranged
as in Figure 10.85 in front of a sheet of aluminum (about 30 x 30 cm), move the receiver
along the meter stick and observe maxima (antinodes) and minima (nodes) in the standing-
wave pattern produced by reflection from the sheet. Obtain the best value for the separation
between nodes by measuring the distance through which the receiver travels in producing
some large number of these peaks and dips in the signal. Repeat this measurement a few
times.

EXERCISE 9

How is the distance between nodes obtained above related to the wavelength of the
microwaves? Report the best value of A, along with an estimate of the uncertainty.

If the apparatus for Experiment 2 is available, you can make a precision measurement of
A with the wavemeter as an alternative to the technique described above.
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FIGURE 10.8 (a) Klystron transmitter and diode receiver.
() Configuration for wavelength measurement.
(c) Configuration for scattering measurement.

(b) Bragg Reflection from a “Crystal.” Align the layers of Styrofoam with the Al balls
so that a cubic arrangement of scatterers is formed. Peak the transmitter output as in (a)
and arrange the transmitter, receiver and crystal on the goniometer as in Figure 10.8¢ so
that reflections off the (100) plane of scatterers can be measured. Record readings from the
receiver as 6 is varied in 1° increments. Note that both receiver and transmitter positions
must be changed between readings to keep the angles of reflection and incidence equal.
Make an intensity versus 6 plot.

EXERCISE 10

From your data, calculate the spacing between (100) planes in the crystal. Compare this
with a direct measurement of the side of the unit cube.

EXERCISE 11

As stated in connection with Exercise 4, the reciprocal lattice vectors G(hkl!) are perpendic-
ular to the planes (4k/). Use this fact to calculate the angle between the (100) planes and
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those with indices (110) and (210). Also, use the expression given in Exercise 5 for d(hkl)
to calculate the spacing between these two additional sets of planes in terms of the (100)
spacings.

Use the angles calculated above to rotate the crystal so that reflection data can be taken
for the (100) and (210) planes. Collect, plot, and analyze this data to deduce experimental
values for the interplanar spacings. Compare these to the spacings calculated from the result
of Exercise 11 by using the directly measured (100) spacings.

X-Ray Bragg Diffraction

Note: As with all ionizing radiation, caution should be exercised to avoid unnecessary
bodily exposure. A scattering shield (standard equipment on the Tel-X-Ometer) should be
in place when the x-ray tube is in operation.

(a) Single Crystal. Mount the NaCl single crystal in the crystal mount of the diffrac-
tometer arrangement so that the (100) face is parallel to the back of mount, as shown
schematically in Figure 10.9. Use an accelerating voltage of 30 kV for the x-ray tube and a
current consistent with its power rating to produce a collimated beam of x rays that strikes
the crystal face as shown. The diffractometer should be in 6-26 mode, that is, the G-M
detector arm should move through an angle 20 whenever the crystal holder turns through
0 so that the angles of incidence and reflection remain equal as the angle # is scanned.

For values of @ within the range of motion of the diffractometer, record the detected
intensity versus 6. Plot the data.

Repeat the scan with the Ni foil in the incident x-ray beam.

\:‘.\3

X-ray K‘ f
tube

(stationary) Crystal (100) face

G-M detector

b T
240

FIGURE 10.9 Arrangement for measurement of single-
crystal diffraction.

EXERCISE 12

Identify each observed peak with respect to the value of n (the order) in the Bragg condition
of equation 18 and with respect to the wavelength of the radiation responsible for it.
Tabulate the angular positions of the peaks and, from the known wavelengths involved,
calculate values for d(100) in NaCl. You should keep in mind the restrictions that the
discussion of Exercises 7 and 8 place on the reflections. For NaCl the edge of the unit cube
of Figure 10.3 has an accepted length of @ = 0.563 nm. How does this compare with the best
value derived from your data?
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Repeat the measurements and analysis for the (100) face of a KCl single crystal, for
which the accepted value of a is 0.629 nm. Account for the differences in the KCl and NaCl
patterns.

(b) Powder (Debye—Scherrer) Method. In a powder sample composed of a large number
of small crystallites with random orientation, each set of planes (hkI) exhibits all possible
orientations with respect to the incident x-ray beam, as depicted in Figure 10.10a. The
Bragg condition of equation 18 for each set of indices (hk/) is thus always satisfied for some
small fraction of the crystallites. This means that, for each set of planes associated with a
nonzero structure factor, we expect a specular reflection at the Bragg angle with respect to
these planes, that is, at an angle 20 with respect to the direction of the incident beam. The
locus of all such directions is a set of cones with half-angles 20 and with the incident beam
direction as a common axis, as shown in Figure 10.105.

If a cylindrical band of photographic film is positioned with its diameter coincident with
the incident beam, the Bragg angles may be determined by measuring the angular positions
of the exposed rings. In this arrangement, known as a powder camera, the sample should be
a powder formed into a cylinder perpendicular to the plane of the film so that all reflections
can be recorded photographically.

If a powder camera is unavailable, the angular positions of the Bragg reflections may be
determined by scanning the G—M tube position while keeping the sample and x-ray tube
stationary, as suggested by Figure 10.10qa. The sample can be prepared by grinding the
substance to a fine powder with a ceramic mortar and pestle and allowing it to stand until
enough moisture has been absorbed from the air so that it can be conveniently packed onto
a glass microscope slide.

Obtain the angular positions of the powder peaks for NaCl and KCl as discussed above.
For each peak, tabulate the Bragg angle 8, d(hkl), and the quantity m?d(hkl), where m?
takes on all integer values up to 20.

Film

c—

X-ray
source

G-M detector

/ (b)

FIGURE 10.10 (a) Diffraction from a powder sample. (#) Locus of diffraction angles in a powder camera.

fa)

EXERCISE 13

From your tabulation and the relation between d(hk/) and the cubic cell side a (see Exercise
5), identify, for each peak, the entry in your tabulation which corresponds to the common
value of a. Assign Miller indices (hk/) to each peak reflection.

EXERCISE 14

Determine the best value of a for NaCl and KCl. How do these compare with the accepted
values given above? You may wish to weight your average, keeping in mind that smaller
values of the measured angles 20 are likely to contain larger relative errors.
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EXPERIMENTS

COMPUTER-ASSISTED EXPERIMENTATION (OPTIONAL)

Prerequisite
Experiment 6, Introduction to Computer-Assisted Experimentation.

Experiment

A complete computer interface for an x-ray Bragg spectrometer should consist of (a) a
means of acquiring a count rate from a detector, (b) a means of recording the angular
position of the detector arm, (c) a mechanism by which the computer can increment the
angular position of the detector arm and/or crystal mount between readings (if possible for
a particular system), and (d) software instructions to plot the data so that peak positions
may be obtained. We discuss the details for implementing (a) and (b) below.

(a) The conditioning circuit shown in Figure 6.11a is suitable for counting pulses input
from a G-M tube to a scaler/timer. Figure 6.115 shows the output of each stage of the
conditioning circuit, which finally presents, for each input pulse, a digital pulse to the analog
input of the ADC. The text of Experiment 6 contains a thorough discussion of the details
of this circuit.

(b) One possibility for recording the angular position of the detector arm is discussed in
reference 4 for the Tel-X-Ometer unit in particular. A miniature 10-turn, 10-kQ potentiome-
ter is configured as a voltage divider as indicated in Figure 10.11 and the center lead is
connected to the input of the ADC card, so that the angular position of its shaft is digitized.
The potentiometer is mounted in a bracket attached to the thumbwheel on the detector arm;
its shaft is then mechanically coupled, by means of a small section of rubber tubing, to the
end of a metal shaft that is installed coaxially with the thumbwheel. As the detector arm is
taken through a Bragg angle range of 100°, the thumbwheel and potentiometer shafts
complete about nine revolutions. For maximum angular resolution, the dc voltages ¥, and
¥, should be adjusted so that taking the detector through the angular range of interest will
cause the input of the ADC to traverse the entire allowable range.

10 turn

10KQ to A/D converter

Vs

FIGURE 10.11 Voltage divider for digitizing the angular
position of the detector.

EXERCISE 15

Determine, for your A/D card, optimal values of ¥, and V, if data are to be taken over the
range 10° <8 < 110°, From the number of bits in your card’s digital output, determine the
angular resolution of the system for this range of Bragg angles. How does this compare with
the uncertainty in the angle readings taken from the scale of the spectrometer?
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Measurements and Software

Software needs to convert each potentiometer voltage to an angle, acquire the number of
pulses received for each position during some fixed counting period, store the data, and plot
the results.

Calibration should be achieved at the beginning of each run by setting the detector at the
end points of the range. Background counts need to be acquired and used to adjust the data.
The maximum allowable count rate will be determined by the G—M tube and by the
software. This last consideration is discussed further in the text of Experiment 6, in the
section entitled Computer-Assisted Counting and Data Analysis.

Atomic and Molecular Physics

11. FRANCK-HERTZ EXPERIMENT: ELECTRON SPECTROSCOPY

Historical Note

The 1925 Nobel prize in Physics was awarded jointly to James Franck, Germany and Gustav
Hertz, Germany
For their discovery of the laws governing the impact of an electron upon an atom

Franck and Hertz performed the experiment in 1914, 12 years before the development of
quantum mechanics, and it provided striking evidence that atomic energy states are quantized.

APPARATUS [Optional Apparatus in brackets]

Franck—Hertz tube

Electric oven

Variac

Thermocouple and temperature potentiometer

Electrometer

Circuit to provide dc voltages for the Franck—Hertz tube, see Figure 11.5
6.3-V ac filament supply

Oscilloscope [with an available sawtooth voltage|



