ROTEIRO DO EXPERIMENTO

14 de janeiro de 2022

1. Roteiro

- 1. Assista o vídeo *Apresentação da Experiência I e II* que encontra-se no site da disciplina: (http://fap.if.usp.br/~jhsevero/Fisica_Experimental_C_Quadrimestral_2022/ead.html).
- 2. Assista o vídeo Importação dos dados para o Origin: (http://fap.if.usp.br/~jhsevero/Fisica_Experimental_C
- 3. Faça o download dos arquivos CSV com os dados que estão dispostos no site da disciplina:(http://fap.if.usp.br
- Obs1: Ao entrar no site clique na sua turma e em seguida no grupo. Cada grupo receberá um conjunto com 5 aquisições que deverão ser tratado. Grupos diferentes terão dados diferentes.
- Obs2: O arquivo gerado no experimento de Franck-Hertz é mostrado na figura abaixo. Nesta curva é mostrado a corrente no ânodo pelo potencial de aceleração na grade do tubo de Franck-Hertz. Neste experimento a corrente no ânodo não foi calibrada portanto, os valores mostrado no eixo Y não são verdadeiro. Por outro lado os valores mostrados no eixo X são verdadeiros e devem variar de 0 50V aproximadamente. Esta figura é mostrada para que vocês tenham ideia do formato da curva que é esperado ao plotar, no Origin, os dados que lhe foram fornecidos.

- 4. Carregue o programa Origin e faça a importação dos dados para o programa (veja o vídeo *Importação dos Dados para o Programa Origin* para ver a forma correta de importar os dados).
- 5. Renomeie a coluna B(Y) para B(X) e faça um gráfico de B(X) vs C(Y), este gráfico deve mostrar a curva de Franck-Hertz.

🏥 T183 - T18	3.csv								
	A00	B(Y)	cm	P(Y)	^	0	- Folder1	1	
Long Name	V(canais)	V(Calib)	l(med)	E(I)		4		40 -	C .
Units				R		EB			
Comments				0		:		20	A () /
Sparklines			mm	Lummer 1		0	Name T M.,	30 -	$\Lambda \Lambda \Lambda$
1	0	0	-NAN	0		0	Graphi G., M 8	Day 20 -	
2	1	0,1914	2	0		Т	1103.CSV W. N 0	÷ .	
3	2	0,3828	0,3571	1,7738		1.			A A A V
4	3	0,5742	1,1684	4,9396		1.		10 -	, /\ / \/ V
5	4	0,7656	3,79	4,2012		Ξ,			\wedge / \vee
6	5	0,957	3,835	9,94				0- Ma	
7	6	1,1484	0,7558	4,9781					
8	7	1,3398	0,5714	5,1053				0	10 20 30 40 50
9	8	1,5312	1,7327	6,768					V(C <u>R</u> [ib)
10	9	1,7227	0,3846	3,4919	~		< ×		17 17
T183 /			<	>			(• / • / • 💼 • 🖾 •	± • ₩ • 10 • \$	[]윤·[윤·[윤·[종·[]] 8 - 8]]] 8 - 8] · 8] · 8] · 8] · 8] ·

- Obs_3: O eixo X deve mostrar o potencial de aceleração que deve variar de aproximadamente 0-50V. Caso o eixo X não mostre esses valores, então sua importação não foi feita corretamente. O eixo Y deve mostrar a corrente no anodo que está em unidades relativas [u.r.]. Essa corrente não está cabibrada e seu valor pode variar bastante. Não se preocupe com isto porque só precisaremos da calibração do potencial de aceleração que é indicado no eixo X.
- Obs_4: Com o cursor do origin *data reader* \boxplus , indicado na figura abaixo, do lado esquerdo, verifique se o espaçamento entre os picos é de aproximadamente 5,0V.

2. Dados

- Assista o vídeo Tratamento dos Dados: (http://fap.if.usp.br/~jhsevero/Fisica_Experimental_C_Quadrimes
- Os arquivos que lhe foram fornecidos possuem a seguinte extensão: $E_1_T_(182)_1.csv$. Onde E_1 representa o número do seu equipamento, $T_(182)$ representa a temperatura do tubo de Franck-Hertz, que você deve utilizar no cálculo da seção de choque.

2.1 Tratamento dos dados

Faça um gráfico $I(V_A)$ e enumere os picos como mostrado na figura 1 abaixo. Esse gráfico deve ir para o relatório.

1. Obs_5: a enumeração dos picos é importante e você deve enumera-los corretamente. O resultado da menor energia de excitação do Hg E_A dependerá dessa numeração. Ao atribuir o índice $n = 1, 2, \ldots$ a cada um dos picos, você pode não ter sido capaz de ver os primeiros picos, mas usando a expressão $n \leq V_A/4$, 86 você pode deduzir o valor correto para n. Lembre-se ainda que o primeiro pico deve aparecer para o potencial de aceleração da ordem de 5 + 2 = 7V onde esse 2V é devido a função trabalho.

Figura 1 - Ordem de aparecimento dos picos de corrente na curva $I(V_A)$.

Determinar a posição dos picos.

• Obs_6: Para determinar a posição dos picos e vales com precisão, primeiramente faça um ajuste parabólico na curva da figura 1 para subtrair a tendência de crescimento da curva. Com o residuo do ajuste, faça um ajuste não linear gaussiano do tipo, $y(x) = y_0 + A/(w.\sqrt{\pi/2})exp\left[-2\left(\frac{x-x_C}{w}\right)^2\right]$ em torno do pico ou vale. Neste caso, a posição do máximo será determinado pelo valor de x_C do ajuste. Aconselha-se que você assista o video Tratamento dos Dados (http://fap.if.usp.br/~jhsevero/Fisica_E antes de iniciar o ajuste dos dados.

Faça uma tabela, como a representada abaixo (Tabela 1), indicando a ordem dos picos, a posição dos máximos, a diferença de potencial entre máximos consecutivos e a incerteza. Repita essa mesma operação para os vales.

	Temperatu	ıra 182 C		Temperatura 182 C				
Ordem	Potencial	Diferença	Incerteza	Ordem	Potencial	Diferença	Incerteza	
dos picos	associado	de potencial	em $d_{i,j}$	dos vales	associado	de potencial	$\mathbf{em} \ d_{i,j}$	
	ao pico [V]	$d_{i,j}$ entre os [V]			ao vale [V]	$d_{i,j}$ entre os	[V]	
		picos [V]				vales [V]		
1				1				
2	$11,\!92$	4,81	0,10	2	14,56	4,87	0,04	
3	16,73	5,02	0,07	3	19,43	4,92	0,02	
4	21,75	4,81	0,08	4	24,35	4,97	0,02	
5	$26,\!56$	5,02	0,05	5	29,32	5,07	0,02	
6	31,58	5,02	0,10	6	34,38	5,16	0,01	
7	$36,\!60$			7	39,54			

Tabela 1- Potencial, diferença de potencial entre picos e vales consecutivos e incertezas

associadas aos picos e vales.

Construa um gráfico da ordem dos picos pela diferença de energia entre dois picos consecutivos ($\triangle E_n(n)$). Repita o gráfico para os vales.

Faça um ajuste linear dos pontos para cada caso (pico e vale), como mostrado na figura 2 abaixo.

Figura 2 - Ajuste linear da diferença de energia entre dois picos (gráfico da esquerda) consecutivos e entre dois vales consecutivos (gráfico da direita) em função da ordem de aparecimento dos picos e vales.

A partir dos coeficientes das retas ajustadas para os picos e vales, determine a menor energia de excitação E_A , (caso tenha dúvidas de como calcular essa energia assista ao video L) o livre caminho médio λ e a seção de choque σ . Para calcular o livre caminho médio e a seção de choque com as devidas incertezas, utilize o formulário que está na penúltima página do documento Apresentação da Experiência no item E) no site da disciplina (http://fap.if.usp.br/~jhsevero/Fisica_Experimental_C_Quadrimestral_2022/ead.html).

Coloque seus dados em uma tabela como a representada abaixo (Tabela 2).

• Obs_7: não esqueça de colocar as incertezas nos seus resultados.

Temperatura	Energia de	Energia de	Livre caminho	Seção de choque	Livre caminho	Seção de choque
$[^{o}C]$	excitação	excitação	médio	(picos)	médio	(vales)
	(picos)	(vales)	(picos)	$[m^2]$	(vales)	$[m^2]$
	[eV]	[eV]	[m]		[m]	
182 ± 5	$4,55\pm0,02$	$4,72\pm0,03$	$(103 \pm 3).10^{-6}$	$(0, 2 \pm 0, 1) . 10^{-20}$	$(66 \pm 5).10^{-6}$	$(0, 24 \pm 0, 10).10^{-20}$

Tabela 2- Energia mínima de excitação, livre caminho médio e seção de choque para picos e vales.

Calcule o valor médio das grandezas encontradas (energia, livre caminho médio e seção de choque) entre os picos e vales. Insira os dados obtidos em uma tabela como a representada abaixo. Coloque também o valor teórico esperado de cada grandeza.

• Obs_8: Os valores teóricos para as grandezas energia de excitação do mercúrio, livre caminho médio e seção de choque são os seguintes:

$$\begin{array}{rcl} E_a &=& 4,67eV\\ \sigma_T &=& 0,5.10^{-20}m^2\\ \lambda &=& \frac{k_BT}{p.\sigma_T} = \frac{1,38.10^{-23}T}{8,7.10^{(10,5-3110/T)}0,5.10^{-20}} \end{array}$$

onde T é a temperatura média entre todas as aquisições.

Calcule as incertezas nos valores médios utilizando a seguinte relação

$$\sigma_{E_a} = \sqrt{\left(\sigma_{E_{a,P}}\right)^2 + \left(\sigma_{E_{a,V}}\right)^2}.$$

Temperatura [°C]	Energia de excitação (valor médio) [eV]	Energia de excitação (valor esperado) [eV]	Livre caminho médio (valor médio) [m]	Livre caminho médio (valor esperado) [m]	Seção de choque (valor médio) $[m^2]$	$\begin{array}{c} {\rm Seção \ de} \\ {\rm choque} \\ {\rm (valor} \\ {\rm esperado}) \\ [m^2] \end{array}$
182 ± 5	$4,64\pm0,04$	4,67	$(85\pm 6).10^{-6}$	$31,078.10^{-6}$	$(0, 22 \pm 0, 10).10^{-20}$	$0, 5.10^{-20}$

Tabela 3- Valores médios e esperados para a energia mínima de excitação do mercúrio, livre caminho médio e seção de choque.