4323301- Física Experimental C - Experimentos com Raio X

J.Kogler - 2022

ROTEIRO DO EXPERIMENTO

1. Equipamento utilizado:

- Difratômetro de Raio X 554 800 (LD Didatic GmbH)
- Computador conectado ao difratômetro via USB com o software Xray apparatus.

2. Descrição do experimento

2.1 Preparação do experimento:

• Primeiramente, ligue o difratômetro:

Para ligar o difratômetro: chave liga/desliga (vermelha) localizada no painel lateral esquerdo (veja a figura 3, página 4, adiante).

No *desktop* da tela do Windows no computador, **abra o programa** *X ray apparatus* – v. fig. 1 abaixo:

Figura 1 – painel de abertura do programa X ray apparatus

O programa *Xray apparatus* permite controlar o difratômetro via computador. O difratômetro também pode ser operado através de seu painel de controle, porém é mais confortável fazê-lo através do software, além deste permitir um registro mais prático da configuração dos parâmetros do experimento, além do registro e apresentação das medidas.

DESCRIÇÃO DOS BOTÕES NA BARRA DE FERRAMENTAS (fig.2 abaixo):

Figura 2 – Barra de ferramentas do programa Xray apparatus

Para salvar seus dados (gráficos) – o programa salva seus dados em um formato proprietário, que <u>só pode ser lido pelo programa</u>. Você deve criar uma pasta na área de trabalho e salvar seus dados todos nela. Ao salvar no formato proprietário, poderá acessar novamente os seus dados através do programa quando voltar para a aula da 2ª semana. Se não o fizer, terá perdido seus dados e deverá fazer a aquisição de medidas novamente. Use o botão de salvar dados, que se encontra na barra de ferramentas. (Ao final da 1ª aula, salve todos seus arquivos em um *pendrive* ou envie-os para seu *e-mail*, por segurança).

Capturas de tela – os gráficos mostrados pelo programa não são salvos em formato gráfico. **Capture as telas** <u>após cada sessão de medidas</u>, para poder incluir os gráficos em seu relatório.

Para salvar os valores numéricos para uso em planilha (Excel, Origin, LabVIEW, etc) – na coluna lateral esquerda da tela do programa *X ray apparatus* encontram-se apresentados os valores numéricos. Clique-direito na aba correspondente ao experimento que estiver fazendo (*Bragg / Planck / Transmission / Moseley*), e aparecerá um menu com a opção de guardar os dados no *clipboard (copy table)*. Uma vez salvos lá, você poderá abrir um aplicativo de edição de texto (*Notepad*, por exemplo) e colar nele (*paste*) o *clipboard* e em seguida salvar em formato **.txt** em sua pasta pessoal para uso posterior em uma planilha de seu gosto ou em seu próprio programa.

Primeiros procedimentos (checklist):

1. Cristal - Verificar se o cristal de NaCl já está colocado no suporte rotativo do difratômetro.

2. Janelas - Verificar se as janelas do difratômetro estão bem fechadas.

3. Ligar - Verificar se o difratômetro está ligado. Caso não, ligue-o.

4. **Reset** - Convém no início de cada aula dar um reset no difratômetro usando o botão do painel frontal de controle do difratômetro. Ele deverá responder com os ruídos característicos e posicionar o cristal no ângulo zero de partida.

5. **Calibração** - Proceder à calibração do experimento no início da sessão de medidas (basta 1 vez em uma mesma aula). O procedimento de calibração está descrito na próxima página.

Figura 3 – Itens essenciais do difratômetro

Procedimento de calibração

- Escolha na tela do programa Xray apparatus, a aba "Bragg".
- Localize o botão com o símbolo do cursor (seta vermelha v. fig. 2a) e abra a janela indicada na figura 2b.
- Localize o botão da Toolbox (v. fig. 2) e abra o painel indicado na figura 4a.
- Localize o botão Crystal calibration no painel Settings (fig.4a) e clique no mesmo.

	Crystal calibration	×
Settings X.Ray Apparatus Crystal General Goniometer Parameter U = 35.0 KV βmin= 2.5 • Δβ= 0.1 • Target U = 35.0 KV βmin= 2.5 • Δβ= 0.1 • Coupled β= 19.2 I= 1.00 mA βmax= 20.0 • Δt= 5 \$ Current actions V Replay Zero Loudspeaker	Crystal and anode □ 0 * (without target table) Crystal: NaCl (2d = 564.0 pm) ♥ Anode: Mo (K _a = 17.44 keV) ♥ Target angle: 7.2 * Progress Target angle: 6.9 * (-0.3 *) Sensor angle: 14.7 * (+0.2 *) Counting rate: 2413 /s	The calibration of a crystal should be carried out after every crystal change or after every re-orientation of a crystal. This will be saved in the x-ray apparatus until the next calibration. The 0° calibration (without target table) is sensible for Debye-Scherer scans (powder targets). For Bragg scans (single crystal), it is only necessary if the sensor angle has become so maladjusted that the automatic crystal calibration can no longer find the counting rate maximum.
Close Crystal calibration Help	Start search	Cancel Adopt
(a)	A	b)

Figura 4 – Calibração e ajuste de parâmetros

Calibrar o difratômetro usando a opção "Crystal callibration" do painel "settings" (fig.4a).
 Ao abrir o painel da fig.4b, indique o cristal em uso (no caso NaCl) e o alvo no anodo do tubo de raios X (no caso Molibdênio – Mo).

O procedimento de calibração assegura que o cristal, detector e medidor de ângulos estejam corretamente alinhados e que a varredura acontece com o cristal sendo girado de um ângulo θ e o detector de 2 θ . Você pode acompanhar a evolução da calibração observando a animação na janela igual à da fig. 6b, que você deve ter aberto anteriormente. Lá será dada a indicação dos ângulos e da contagem de fótons pelo detector Geiger-Müller.

Ao terminar a calibração, use a opção "Adopt" (Botão no painel da fig. 4b).

Experimento – caracterização do cristal de NaCl por difratometria de Bragg

- Escolha na tela do programa Xray apparatus, a aba "Bragg" (seta vermelha na fig.5, abaixo).

Salvar / apagar area de trabalho

Figura 5 - Controles do programa X-ray apparatus

Especificação dos Parâmetros do Experimento

Antes de continuar, certifique-se de que os conteúdos da aba crystal do painel *Settings* (ver figura 9a) encontram-se ambos em *off* (nessa posição os gráficos das contagens de fótons serão apresentados em função do ângulo de espalhamento θ , como desejamos).

A difração de Bragg será feita com **a etapas de aquisição de dados**, usando um diferente valor de tensão aceleradora U = 35 kV.

A tabela I a seguir indica os valores dos parâmetros a serem usados nessa etapa do experimento de difração de Bragg.

TABELA I

Tensão U	Corrente I	β_{min}	β_{max}	Δβ	Δt
(kV)	(mA)	(graus)	(graus)	(graus)	(seg)
35	1	2,5	30	0,1	5

Na barra de ferramentas do programa *X-ray apparatus*, clique no botão de ajuste dos parâmetros experimentais (**veja** na figura 5).

Ao fazer isso, será exibido o painel de ajustes (Settings) – ver figura 4a. Nesse painel, você deverá introduzir os parâmetros indicados abaixo, usando os valores da **TABELA I** acima.

U → tensão aceleradora = 35 kV

$I \rightarrow$ corrente no tubo de raio X = 1 mA

 β min \rightarrow **ângulo inicial** de incidência do feixe de raio X (que chamamos de θ_{min}) = 2,5°

 β max \rightarrow ângulo final de incidência do feixe de raio X (que chamamos de θ_{max}) = 30°

 $\Delta\beta \rightarrow$ incremento no ângulo do goniômetro a cada passo do motor (chamamos de $\Delta\theta$) = 0,1°

∆t → tempo de integralização das contagens (tempo que o goniômetro fica em cada posição angular, usado pelo contador Geiger-Müller contar fótons de raio X espalhados nessa posição) = 5 segundos.

- Ajustar os parâmetros U, I, Δt , $\Delta \beta$, $\beta min \in \beta max$.

- Para dar a partida na aquisição, selecionar a caixa scan, no painel Settings da figura 4a.

Iniciada a aquisição, começará então a varredura angular. Primeiramente, você escutará o difratômetro ligar a fonte de alta tensão, alimentando o tubo de raio-X, que deverá ficar iluminado devido à incandescência do seu filamento (a caixa HV da fig. 4a indicará que a fonte está ligada). O motor de passo será acionado e a amostra será posicionada no ângulo , β min. O contador de fótons de raio-X realizará contagem durante o intervalo de tempo Δt na posição angular β em que se encontra (β min no início), e ao término o motor girará a amostra de um incremento angular $\Delta\beta$, passando-se para o valor seguinte de ângulo β , e repetir-se-á o procedimento de contagem de fótons por mais um intervalo de tempo Δt , e assim por diante, até o ângulo da amostra alcançar o

valor final βmax. A cada incremento angular na posição da amostra, o medidor será posicionado de maneira a preservar a configuração de medida mostrada na figura 6.

Figura 6 – Configuração angular – (1) Colimador do feixe de raio-X.
(2) Amostra de cristal (NaCl). (3) Detector dos fótons de raio-X espalhados pelo cristal (e que sofrem interferência entre 2 e 3).

Podemos estimar quanto tempo irá demorar cada varredura completa iniciando no ângulo β min e terminando em β max, sendo cada passo angular $\Delta\beta$ dado a cada intervalo de tempo Δt . Calcule isso.

Você deverá encontrar um valor próximo de 30 minutos, que é a duração de cada varredura usando os parâmetros da TABELA I.

<u>Nesta 1^a aula</u> de laboratório de raio-X, você <u>deverá executar a etapa</u> acima de coleta de medidas da difração de Bragg. Após conclui-las, <u>deverá fazer também</u> a determinação dos centros dos picos e suas incertezas.. <u>A 2^a aula</u> de laboratório de raio-X, à distância será usada para tirar as dúvidas eventuais sobre a análise dos dados, que deverá ser entregue ao final do dia da 2^a aula.

IMPORTANTE

Procure salvar seus dados após a aquisição, para evitar o perigo de perde-los. Você deverá salválos no formato de arquivo usado pelo programa *X-ray apparatus*. Use os botões de salvar mostrados na fig. 4a.

 Observação – <u>Se quiser</u> exportar os dados numericamente, use "clique direito > "copy table" na aba Bragg da coluna onde aparecem os dados. Eles serão copiados no clipboard do computador e você poderá colá-los no *Notepad (bloco de notas)*, para salvar em formato texto (.**txt**). (v.pag.2)