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In this work, the dispersion surface of Bragg-surface diffraction (BSD) is

presented. A symmetric Bragg re¯ection plus a secondary diffracted wave

nearly parallel to in-plane directions distinguish the BSD from an ordinary

three-beam diffraction. The solutions of the fundamental equations of the

dynamical theory of X-ray diffraction for the BSD demonstrate that measurable

specular-re¯ected secondary waves are simultaneously excited with the

diffracted waves.

1. Introduction

The multiple diffraction of X-rays in crystals, when treated by the

plane-wave dynamical theory of diffraction, is basically a problem of

solving the eigenvalues and eigenvectors of a square matrix, which is

called the fundamental equations (Colella, 1974; Chang, 1984;

Weckert & HuÈ mmer, 1997). The eigenvalues (tie points) are related

to the possible X-ray wave vectors in the crystal and the eigenvectors

are the components of the wave ®elds assigned to each wave vector.

For a general N-beam diffraction, there are 4N tie points: 2N for the

specular-re¯ected and forward-transmitted waves (non-diffracting tie

points) and 2N for the re¯ected and transmitted diffracted waves. In

ordinary N-beam diffraction cases, when only strong Bragg re¯ected

and Laue transmitted waves have to be considered, only the last 2N

diffracting tie points are relevant, i.e. half of the waves can be

neglected.

In this short communication, we call attention to a special case

of three-beam diffraction, called Bragg-surface diffraction (BSD)

(Hayashi et al., 1997). In BSD, besides the Bragg re¯ected wave of the

primary symmetrical re¯ection, the secondary diffracted wave is

neither a Laue transmitted nor a Bragg re¯ected wave. It is instead

nearly parallel to the in-plane direction. As illustrated in Fig. 1, near

the geometrical BSD condition, L, the surface-normal direction,

intercepts the dispersion surface of the secondary re¯ection twice, for

instance at A and B in the ®gure. In terms of the eigenvalues of the

fundamental equations, such a geometry provides four tie points for

the secondary re¯ection. Therefore, it is expected for BSD that a total

of eight signi®cant tie points should be taken into account, instead of

the six signi®cant tie points for an ordinary three-beam diffraction.

Here, these eight tie points are calculated for a particular BSD,

222=13�1, which occurs in an Si (111) crystal.

We de®ne K2( j) as the secondary wavevector from the jth tie point

( j = 1, 2, . . . , 8) and nÃ as the outward surface-normal unit vector. The

projection of K2( j) in the surface-normal direction, � = K2( j) � nÃ , is

plotted in Fig. 2 as a function of �!, the deviation from the Bragg

angle of the 222 primary re¯ection. The four tie points due to the

secondary re¯ection appear as two pairs of conjugated values (gray

lines in Fig. 2) when the tangent component of the incident beam falls

in the outer region of the secondary Ewald sphere. For �! > 0.520 0,
their imaginary parts become negligible. In terms of classifying them

as non-diffracting or diffracting tie points, they are most likely to be

Figure 1
Geometrical condition of the BSD represented by the intersection, L, of three
dispersion surfaces: 0, 1 and 2 centered, respectively, at the origin of the reciprocal
space and at the primary and secondary reciprocal-lattice points.

Figure 2
Components in the normal direction of the allowed X-ray secondary-wave vectors
in the crystal, � = K2( j) � nÃ , as a function of �!. Only the real part has been plotted,
and the azimuthal rotation of the crystals is at the maximum of the 222=13�1 BSD,
wavelength 1.53793 AÊ . The eigenvalues were determined by Colella's formalism
(Colella, 1974).

electronic reprint



short communications

508 Avanci and MorelhaÄo � Bragg-surface dynamical diffraction Acta Cryst. (2000). A56, 507±508

non-diffracting ones since the components of their eigenvectors have

signi®cant values only for the wave ®elds of the secondary beam.

However, the weights, q( j), of these tie points for the total ®eld in the

crystal are of the same order of magnitude of the weight for the

diffracting ones. For comparison, we show in Table 1 the eight �( j)

values, calculated at �! = 0.520 0, and the corresponding magnitude of

q( j). The weights were determined by solving a linear system of

equations, which is constructed from applying the boundary condi-

tions of the electromagnetic ®elds at the entrance and exit surfaces of

the crystal slab (Weckert & HuÈ mmer, 1997). Moreover, note that for

an ordinary three-beam diffraction six linear equations are enough to

determine the weights, while for the BSD eight equations would be

necessary. The two extra equations are obtained here by splitting the

secondary beam into one Bragg re¯ected beam, formed by the

propagation modes with � > 0, and one Laue transmitted beam,

formed by those modes with � < 0. The BSD becomes an ordinary

three-beam diffraction when the crystal surface is tilted for a value

large enough to make six propagation modes with � of the same sign.

This is also exempli®ed in Table 1.

The above examples demonstrate that the BSD geometry on a

non-tilted surface gives relatively strong specular-re¯ected and

forward-transmitted beams compared with any other three-beam

diffraction geometry. Consequently, measurable specular-re¯ected

waves are simultaneously excited with the diffracted waves, as

observed by Campos et al. (1998). The forward-transmitted waves are

also excited, although they should be experimentally more dif®cult to

observe.
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Table 1
Values of the projections (�) and weights (|q|) for each allowed propagation mode,
j = 1, . . . , 8, in crystals with non-tilted and tilted surfaces.

The calculated values correspond to �! = 0.50 0 in Fig. 2 and a �-polarized incident beam
was assumed. The modes 1, 2, 7 and 8 are due to the secondary re¯ection.

Non-tilted Tilted (1.60 0)

j � (�10ÿ3 AÊ ÿ1) |q| � (�10ÿ3 AÊ ÿ1) |q|

1 0.829249 0.00276 0.829227 0.19599
2 0.819241 0.21316 0.819157 0.21524
3 0.004985 ÿ 0.001105i 1.34862 0.009972 ÿ 0.0011014i 1.34732
4 0.004985 � 0.001105i 0.15913 0.009972 � 0.0011014i 0.15992
5 ÿ0.004985 ÿ 0.001105i 2.16170 0.00000045 ÿ 0.001103i 2.15053
6 ÿ0.004985 � 0.001105i 0.25538 0.00000045 � 0.001103i 0.25419
7 ÿ0.819241 1.45569 ÿ0.819218 0.0000
8 ÿ0.829249 0.06264 ÿ0.829167 0.0000
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