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A completely different approach to the problem of physically measuring the

invariant triplet phases by three-beam X-ray diffraction is proposed. Instead of

simulating the three-beam diffraction process to reproduce the experimental

intensity pro®les, the proposed approach makes use of a general parametric

equation for ®tting the pro®les and extracting the triplet phase values. The

inherent ¯exibility of the parametric equation allows its applicability to be

extended to non-perfect crystals. Exploitation of the natural linear polarization

of synchrotron radiation is essential for eliminating systematic errors and to

provide accurate triplet phase values. Phasing procedures are suggested and

demonstrative examples from simulated data are given.

1. Introduction

Invariant triplet phases contain important pieces of informa-

tion about crystalline structures. It is well known that the

n-beam diffraction (n-BD) of X-rays in crystals can lead to

physical measurements of re¯ection phases, more precisely to

the invariant triplet phases. Experimental procedures and

diffraction theories have been developed and improved for

decades in order to achieve a better understanding of the

n-BD phenomenon (Hart & Lang, 1961; Colella, 1974; Post,

1977; Chang, 1982; Hùier & Marthinsen, 1983; Juretschke,

1986; Tischler & Batterman, 1986; Shen, 1986; Shen & Colella,

1987; Weckert & HuÈ mmer, 1997; Stetsko et al., 2001; Thor-

kildsen et al., 2001; and many others). Nevertheless, there are

still several dif®culties in this research ®eld that require

further attention. One major dif®culty occurs because the

principle of the n-BD phase sensitivity relies on the inter-

ference of multiple diffracted waves inside the crystal. Since

the diffracted waves have to preserve structural phase infor-

mation, the diffraction theories capable of reproducing the

n-BD interference of the waves describe the diffraction

process in perfect crystals. When a phase value is extracted by

®tting the characteristic interference pro®les of the n-BD with

such theories, it is implicitly assumed that the crystal is perfect

or, in other words, that all counted/recorded photons have

interacted with the perfect periodic lattice. What are the errors

due to such an assumption? How does the interference pro®le

change if some photons are scattered around crystalline

defects by slightly displaced atoms? What level of crystalline

perfection is required for phasing? To answer these questions,

it is necessary to describe the defect structures of the crystals

or to include arbitrary lattice displacements in the available

theories, as, for example, considered by Larsen & Thorkildsen

(1998) or as recently suggested by Okitsu (2003). However,

independently of the theoretical approach used to describe the

n-beam diffraction, and even restricted to three-beam

diffraction in perfect crystals, the equations and their solutions

are very complex.

Since the description of the n-BD process in real samples is

so troublesome, would it be possible to obtain the triplet phase

without having to describe the diffraction process precisely?

For the sake of comparison, let us discuss the strategy to

obtain accurate diffraction peak positions. When the required

information is the peak position (two-beam cases or powder

diffraction), what is the usual procedure? If the peak pro®le is

a Gaussian, a Lorentzian or any other function, one ®ts the

experimental data with the appropriate function and extracts

the position with good accuracy, adjusting the height and

width of the peak. It is not always necessary to make use of

precise diffraction theories that produce the observed peak

pro®le to measure its position. Why was not a similar strategy

attempted to obtain the triplet phases? The answer is because

a general parametric function capable of ®tting the three-

beam diffraction pro®les was not yet established. Actually,

such a parametric function is available but its potential has not

been clearly emphasized. The contribution of this paper relies

on the possibility of determining the triplet phases by just

analyzing the interference pro®les.

Recently, during an investigation of the interference pro®les

of three-beam diffraction (3-BD) cases as a function of the

relative intensity of the diffracted beams (MorelhaÄo & Kycia,

2002), some disagreement between experimental and theore-

tical pro®les were observed. The set of pro®les of the same

3-BD case obtained at different intensity ratios, i.e. different

states of linear polarization (MorelhaÄo & Avanci, 2001),

requires a diffraction theory that allows all experimental

pro®les to be reproduced with a common triplet phase value.

The attempt to simulate the set of pro®les with the standard
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well known second-order Born approximation, or just second-

order approximation, of the 3-BD (Shen, 1986; Shen &

Colella, 1988; Chang & Tang, 1988), the simplest available

approach, has failed. However, the behavior of the experi-

mental pro®les, as a function of polarization, indicates that

they could be reproduced by including two new parameters in

the equation derived from the second-order approximation.

These two empirical parameters were physically justi®ed,

without a detailed discussion of their theoretical basis, as

evidence of crystalline defects in the diffracting volume of the

sample and as higher-order corrections. Under a critical

review, the incompleteness of the used approach compromises

a conclusion on the presence or not of crystalline defects, and

on the systematic errors that they generated. The aim of this

paper is to provide some theoretical basis to the inclusion of

these two parameters and to propose a general parametric

equation to reproduce the 3-BD pro®les. Evidence is given

that this equation allows, to some extent, a quantitative

description of crystalline defects into the 3-BD pro®les and an

accurate triplet phase determination in perfect as well as non-

perfect crystals. Suggestions of general phasing procedures, for

which algorithms can be developed, are also given.

2. Three-beam X-ray diffraction

In the framework of the second-order approximation, when a

3-BD is excited by the incident X-rays, each diffracted beam is

a sum of two wave®elds, EP and ED. The primary wave EP is

produced by a single re¯ection (re¯ection A) while the other

wave, ED, also called the detoured wave, comes from a double-

bounce re¯ection formed by re¯ection B plus the coupling

re¯ection C, whose indices are given by A±B. By keeping one

wave excited and changing the angular condition of the other,

the characteristic interference pro®les are obtained. The most

common is the interference pro®le obtained by an azimuthal

scan (' scan) of the sample, where the intensity I(') /
jEP + ED(')j2 is a function of the crystal rotation around the

diffraction vector of the re¯ection A. Since the primary wave

is kept excited during the ' rotation, its intensity is taken as

constant in this approach. I(') can also be written as

I�'� / jEPj2 � jED�'�j2 � 2jEPjjED�'�j cos  cos��	�; �1�
where  is the angle between the oscillation directions of the

EP and ED wave®elds. The total phase difference, �	,

between these two waves is the sum of two phase angles: the

invariant phase triplet �T = �B + �Cÿ �A, where �G is the phase

of the structure factor of re¯ection G (= A, B or C), and the

dynamical phase shift 
(') of the resonant term, the term that

describes the excitation of the secondary wave due to the

crystal rotation (Weckert & HuÈ mmer, 1997; Shen et al., 2000).

In other words, �	 = 
(') + �T, where 
(') is known from

the X-ray diffraction theory and �T is the desired triplet phase

value to be determined from experiments.

Equation (1) provides an easy-to-understand description of

the 3-BD phenomenon, but it is incomplete. Only two possible

paths, or channels (Shen, 1986), have been considered for the

incident photons inside the crystal: a photon is scattered either

by re¯ection A or by the detour re¯ection B + C. In fact, there

is a dynamical balance of energy among the diffracted beams

as they travel through the crystal, which is precisely described

by the n-beam dynamical theory of X-ray diffraction. In

conventional two-beam diffraction, the dynamical balance

occurs between diffracted±re¯ected and diffracted±trans-

mitted beams. For instance, if only re¯ection A (indices hkl) is

excited, the photons can be scattered by re¯ection A and then

by re¯ection �A (indices �h �k�l) and then by re¯ection A again,

and so on. The different number of bounces suffered by each

photon before emerging from the crystal de®nes the different

possible channels for the photons. Under 3-BD, the situation

is identical but the channels are not limited to those between

the diffracted±re¯ected (A or B) and diffracted±transmitted

beams. The energy balance also occurs between the A and B

diffracted±re¯ected beams; and the coupling re¯ection C is

responsible for such balance. For example, the photons in the

diffracted beam A could have been scattered by any of the

following `Umweg' channels: A (re¯ection A), B + C, A + �A +

A, B + �B + A, A + �C + C, A + �A + B + C, B + �B + B + C, B + C +
�C + C, . . . ; i.e. channels where the resultant diffraction vector

is the same as re¯ection A. When the anomalous dispersion of

all atoms in the crystal is negligible, i.e. when Friedel's law

applies, the phases of the photons scattered by these channels

are �A or �B + �C. Otherwise, small deviations in the phase

values may occur to each channel. Channels like B, A + �C, A +
�A, B + C + �C, . . . , those where the resultant diffraction vector

is null or is the same as re¯ection B, are responsible for the

intensities of the other diffracted beams (secondary and

diffracted±transmitted beams) and, consequently, for some

reduction in the intensity of beam A. This is also known as the

Aufhellung effect (Wagner, 1923). Hereafter, the diffraction

channels are classi®ed within two categories: Umweg and

Aufhellung channels, the former being those responsible for

the structural phase information in the 3-BD pro®les. [The

Umweg terminology, also used by other authors, has been

borrowed from the word Umweganregung, ®rst employed to

name the enhancement of a diffracted beam due to simul-

taneous diffraction inside a single crystal (Renninger, 1937).]

3. Traditional concept of crystalline imperfection in
diffraction theories

In X-ray crystallography, the reduction of power owing to

rescattering of diffracted beams inside a perfect periodic

lattice has been called primary extinction. The rescattering

is the occurrence of any diffraction channel with more than

one bounce. A traditional concept, derived from intensity

measurements in two-beam diffraction experiments, is that

primary extinction depends on the size of the diffracting

lattice. The smaller the lattice is, the smaller is the probability

for the photons to be scattered by channels with higher

numbers of bounces. If the crystal is so small that only single-

bounce channels have non-negligible probabilities, n-BD does

not occur and the kinematical theory of X-ray diffraction is

applied. On the other hand, for large crystals where the

probabilities of all channels cannot be neglected, the dy-
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namical theory of X-ray diffraction is required for describing

the diffraction process.

Real crystals are in general made of several perfectly

diffracting regions, usually called mosaic blocks. Structural

phase determination by 3-BD in such crystals is possible, in

principle, if primary extinction occurs inside some of the

blocks. Otherwise, the energy transfer among the diffracted

beams takes place by secondary extinction owing to channels

where the bounces occur in difference blocks. In these cases,

the structural phase information is lost because of the

unpredictable positioning of the blocks.

4. Theoretical consideration for feasible phasing of
non-perfect crystals

Theoretical descriptions of diffraction processes in general-

ized defective crystals are complicated, and might be useless

for practical phasing applications. However, restricted to

single crystals with low levels of point and line defects, it can

be quite simple. To clearly introduce this simple description,

an imaginary experiment is presented below. It allows an

analogy to the modi®cation that will be implemented in the

second-order approximation, equation (1), for ®tting any

interference pro®le from a perfect crystal to a non-perfect

crystal.

In this imaginary experiment, consider two monochromatic

X-ray beams, with a phase difference of ��, propagating along

the same direction, and that both beams can be turned on or

off independently. P1 and P2 are the detector readings (power

of the beams) measured for each beam when the other is off.

S1 and S2 are the respective areas of the beams at the detector

eye, then the intensities of the beams are I1 = P1=S1 and I2 =

P2=S2. The electric ®elds of these beams are parallel to each

other and their moduli proportional to �I1�1=2 and �I2�1=2. If we

assume that the beams have a partial overlap given by S12, the

superposition area of the beams (S12 = S1\ S2), what is the

detector reading P when both beams are turned on?

There are two distinct contributions to P: one from the

parts of the beams that do not overlap, (S1 ÿ S12)I1 and

(S2 ÿ S12)I2, and another from the part that interferes,

S12�I1 � I2 � 2�I1�1=2�I2�1=2 cos���. In terms of the detector

readings of each beam, P1 = I1S1 and P2 = I2S2, the resultant

reading is

P � P1 � P2 � 2��S12=S1��S12=S2��1=2�P1�1=2�P2�1=2 cos��:

�2�

It allows us to conclude that the correct value of the resultant

reading is obtained when the interference term is multiplied by

the square root of the interfering fractions of the beams, i.e. the

fractions of the beams that are capable of interfering.

Relevant questions for structural phasing by the 3-BD

phenomenon are related to physical reasons that reduce the

capability of interference between two parallel and over-

lapping (S1 = S2 = S12) X-ray diffracted beams. One physical

reason for such a reduction is easily understood by analyzing

an X-ray topography image, such as the one shown in Fig. 1.

The total integrated intensity, P, of this image has contribu-

tions from white areas as well as from dark lines observed all

across the image. If these contributions are counted separately

as Pdark and Pwhite, P = Pdark + Pwhite where Pdark = �P, Pwhite =

(1 ÿ �)P and � gives the weight of each type of contribution.

White areas have a lower intensity owing to primary extinction

since they correspond to diffraction in a perfect periodic

lattice, i.e. dynamical diffraction. The scattered photons from

these white areas do preserve structural phase information.

The dark lines are produced by displaced atoms owing to the

strain ®eld around the core of the dislocations. Since each

atom is displaced from its periodic position in the lattice by

slightly different amounts over the range of the strain ®eld

that goes over several wavelengths, there is no structural phase

information from the strong kinematical contributions of the

dark lines. When X-ray detectors are used instead of imaging

techniques, the detector reading is equivalent to the integrated

intensity over the area of the diffracted beam. But, unfortu-

nately, detectors do not discriminate white and dark contri-

butions. Then, to avoid an equivocal assumption, it is better to

suppose that only a fraction of the detector reading ± usually

called beam intensity ± is capable of interfering with another

diffracted beam.

When two parallel beams are excited in the same volume of

the crystal, exactly as assumed by the second-order approxi-

mation, the interference term of these beams is multiplied by

��1 ÿ �P��1 ÿ �D��1=2, which is the square root of the inter-

fering fractions of the primary (A) and detoured (B + C) beam

intensities. Since in most cases no theoretical calculation or

experimental measurement can account for the exact values of

�P and �D, the best option is to replace the square root by a

Figure 1
Synchrotron white-beam X-ray topography from a slab of silicon (111)
crystal revealing dislocations on the slip system of {111} planes. After
MorelhaÄo et al. (2000).
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single unknown parameter, labeled �. Then, (1) can be

rewritten in a more appropriate form as

P�'� � PP � PD�'� � 2��PD�'��1=2�PP�1=2 cos  cos��	�; �3�
where PP and PD(') are the detector readings for the primary

and detoured beams, respectively. � is in the range from 0 to 1,

i.e. 0 � � � 1. For reasons that are given below, it is convenient

to split equation (3) into two components, P(') = P�(') +

P^('), where

P��'� � PP � �2PD�'� � 2��PD�'��1=2�PP�1=2 cos  cos��	�
�4a�

and

P^�'� � �1 ÿ �2�PD�'�: �4b�
The P�(') component preserves the expected asymmetry of

the interference pro®le for a given phase triplet. As � is

reduced from unity, this asymmetric undistorted phase-sensi-

tive component decreases while the symmetrical component,

P^('), increases. In this decomposition, it has been assumed

that any asymmetry of the pro®le is due to interference effects

between the diffracted beams, and that PD(') is a symmetrical

function [see equation (8)].

The modi®ed second-order approximation, summarized by

(3), has the ¯exibility to take into account, to some extent, the

presence of crystalline defects in the diffracting volume of a

crystal. This is possible by means of the parameter �, which

re¯ects the fact that some of the diffracted photons have

random phases due to their interaction with the defective

lattice; the average effect of such photons is just to increase

the counting rates of the diffracted beams. In terms of phase

determination, this parameter generates systematic errors due

to symmetrical distortion of the interference pro®les, quanti-

®ed by P^('). Certainly, the parameter � preserves its physical

meaning in 3-BD cases where the scattering of the A and

B + C channels are very dominant over the scattering of the

other channels, however, they do not represent the majority of

the cases. Even if equation (3) is applicable to all Umweg

cases, it represents a restricted set of cases that could be

analyzed by this equation.

5. General equation for fitting three-beam diffraction
profiles of linearly polarized X-rays

To extend the applicability of equation (3) to cases where the

effects of the Aufhellung channels are signi®cant, an extra

symmetric negative component can be added to P^('), as

experimentally demonstrated by MorelhaÄo & Kycia (2002).

And, for ®tting purposes, equation (3) can be converted into

the following parametric form

P�'� � v2
P�1 ÿ bjf �'�j2� � R2jf �'�j2v2

D

� 2�Rjf �'�jvPvD cos  cos�
� �T�; �5�
which can also be split into asymmetric and symmetric

components as

P��'� � v2
P � �2R2jf �'�j2v2

D

� 2�Rjf �'�jvPvD cos  cos�
� �T� �6a�
and

P^�'� � ��1 ÿ �2�R2v2
D ÿ bv2

P�jf �'�j2: �6b�
The polarization coef®cients, vP and vD, depend on the

direction of the diffracted beams, kA,B (Fig. 3), as well as on

the polarization direction, eÃ, of the incident beam, k0. They are

calculated by

vP � ÿk̂A � �k̂A � ê�
and vD � k̂A � fk̂A � �k̂B � �k̂B � ê��g; �7�
then, v2

P � vP � vP, v2
D � vD � vD and vPvD cos  � vP � vD

(vP,D � |vP,D|). The minus sign in vP was missing in previous

papers (MorelhaÄo & Kycia, 2002; MorelhaÄo, 2003). R2 is the

maximum ratio between the primary and detoured intensities

without polarization coef®cients; if PP � Xv2
P is the measured

intensity of the primary beam for a given state of linear

polarization, the maximum intensity of the detoured beam will

be PD�'0� � XR2v2
D since |f('0)|2 � 1. In the normalized

equations above, (5) or (6), X � 1.

f �'� � f�w=�2�'ÿ '0� � iw�g � jf �'�j exp�i
�'�� �8�
is the line pro®le function used to describe the excitation of

the detour re¯ection, i.e. of the Umweg channels, with the '
rotation. This function has been chosen because it meets two

major requirements: (i) a symmetric Lorentzian-like pro®le of

PD('), experimentally observed when the primary re¯ection is

very weak or forbidden, therefore, |f(')|2 is a Lorentzian

function centered at '0 and with a FWHM equal to w; and (ii)


(') is 0 [f(') = |f(')|] or 180� [f(') = ÿ|f(')|] when the

reciprocal-lattice point of re¯ection B is inside or outside the

Ewald sphere. The + and ÿ signs in the numerator (ÿ and +

in the denominator) stand for the `out ! in' and `in ! out'

cases, respectively. Across the surface of the Ewald sphere,


(') behaves almost like the hyperbolic tangent function

proposed by Shen et al. (2000). It is also a practical approxi-

mation of the true phase function, as seen in dynamical

diffraction theory (Authier, 1986). Comparisons between

these phase shift functions and their effects on some inter-

ference pro®les are shown in Fig. 2. Small discrepancies are

seen, even though f(') as proposed in equation (8) is chosen

because it saves computer time. It is a very simple function and

provides at the same time the pro®le jf(')j and the phase shift


('). There is no need to program one function to reproduce

the pro®le and another function to account for the phase shift.

As will be pointed out later, computer time is an important

issue to determine �T by ®tting procedures.

The b parameter in (5) and (6b) stands for the Aufhellung

effect. It has a positive or zero value (b � 0) and it produces a

symmetric negative distortion in the interference pro®le that is

proportional to the intensity of the primary beam, i.e. b is the

fraction of Aufhellung with respect to the intensity of beam A.

Here, Aufhellung has been assumed to have the same pro®le,

|f(')|2, of the detour re¯ection. There is no straightforward

demonstration of this assumption, but it is a reasonable
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approximation because the angular condition for Aufhellung

is the same as the detour re¯ection or, in other words, Umweg

and Aufhellung channels are excited simultaneously.

The validity of (5) to describe the underlying physics of any

3-BD process is questionable since no assumption on

diffraction geometry, absorption and crystal shape are

involved. However, despite all the physical arguments used to

obtain its ®nal form, (5) can be seen as a general parametric

equation for ®tting 3-BD pro®les, where correction due to

physical effects such as primary extinction (dynamical

diffraction that already includes Aufhellung channels) and

imperfections are compensated by adjusting the R, � and b

parameters, as well as the intrinsic width w. As far as the

asymmetries in the interference pro®les are ruled by diffracted

photons from Umweg channels, i.e. by cos(
 + �T), the pro®les

can be reproduced by (5). There is one obvious exception; in a

polarization where cos  = 0 only symmetrical pro®les are

reproducible.

Restricted to primary re¯ections in Bragg diffraction

geometry, which avoid effects due to PendelloÈsung (Thor-

kildsen et al., 2001), and except for interference fringes in the

pro®les of crystals with ®nite thickness, equation (5) is capable

of ®tting any pro®le whether it has an Umweg (peak-like) or

an Aufhellung (dip-like) character; some examples were given

in the paper by MorelhaÄo & Kycia (2002). The real problem is

that very different values of triplet phases can be assigned to

the same pro®le. This means that a given pro®le does not

correspond to a single point in the six-dimensional space of

parameter vectors p = ['0, w, R, �, b, �T]. Note that, even

restricted to Umweg cases (b = 0), the detector reading of the

detoured beam, PD('), in (3) is an unknown quantity repre-

sented by the parameter R in (5). It must also be determined,

together with � and �T, by ®tting experimental pro®les. This is

a task that cannot be unequivocally accomplished. Just as

numerical examples, the parameter vectors p1 = ['0, w, R = 1,

� = 0.4, b = 0, �T] and p2 = ['0, w, R, � = 1, b = 0, �T] can be

replaced in (5) to see that they do generate the same P(')

pro®les, but each value of �T in p1, [�T]1, corresponds to a

different pair of R and �T values in p2, [R, �T]2. For instance,

with vP = vD = 1, '0 = 0, w = 1000 and the `out±in' line pro®le

function: [ÿ90�]1 $ [0.67, ÿ90�]2, [ÿ45�]1 $ [0.64, ÿ64�]2,

[0�]1 $ [0.54, ÿ40�]2, [45�]1 $ [0.32, ÿ30�]2 and [90�]1 $
[0.095, ÿ90�]2 ± this last example resembles the pro®le

reversal effect due to crystal imperfections (� < 1) pointed out

by Larsen & Thorkildsen (1998). The above examples illus-

trate the systematic errors that can be obtained in �T when

assuming � = 1 in (5). Therefore, although (5) can reproduce

almost any interference pro®le and also take into account

effects of crystalline imperfections, it is useless to extract the

phase from a single 3-BD pro®le.

6. A three-beam diffraction phasing procedure with
synchrotron radiation

Synchrotron facilities today are available to almost any

researcher, even in developing countries. So, proposing

experiments that must be carried out exclusively with

synchrotron radiation is not a problem. The natural linear

polarization of synchrotron radiation can tune the polarization

coef®cients of (5) in order to break the degeneracy of its

parameters. It allows the asymmetric/symmetric decomposi-

tion of P(') speci®ed by (6) and then elimination of systematic

errors in measuring �T due to symmetric distortions of the

pro®les. Relevant features of (5) to be outlined are:

(i) when vP ' 0, the maximum of P(') is very much

determined by the value of R;

(ii) Aufhellung distortions, i.e. the value of b, are signi®cant

when vP ' 1 and/or vD ' 0;

(iii) polarization directions in which vP ' RvD and |cos  | '
1 are the most sensitive ones to the values of � and �T;

(iv) as a function of polarization, the contributions to P(')

from the interference term and from P^(') are different since

their weights vary with vPvD cos  and with v2
P and v2

D,

respectively;

Figure 2
Behavior of possible functions for describing the dynamical phase shift,

('), and their effects on some interference pro®les. Top-left plot: 
(')
function, `out ! in' sense, from equation (8) (dark line) and 
(') =
�=2{1 ÿ tanh[(' ÿ '0)=w]} from Shen et al. (2000) (gray line). Other
plots: interference pro®les simulated with the phase shift functions, dark
and gray lines, respectively, for �T = ÿ90, ÿ45, 0, 45, and 90� (given at the
right-hand side of each plot). The pro®les were generated by equation (5)
with w = 100 0, R = 1, b = 0 and vP = vD = 1. Horizontal coordinate is �' =
' ÿ '0. A further comparison can also be done with the dynamical phase
shift and interference pro®les given in Figs. 5 and 6 of Weckert &
HuÈ mmer (1997).

electronic reprint



(v) The ' range of P�(') is wider than P^(') since

|f('0 + �')| > |f('0 + �')|2. It increases the sensitivity to the

asymmetric component of P(').

These features suggest the possibility of developing a phasing

procedure where the triplet phases are, in principle, measured

by using (5) to ®t sets of ' scans taken at different polariza-

tion, for instance, with vP varying from 0 to 1 and passing

through the condition speci®ed in (iii).

Con¯icts between diffraction theories arrive at this point

and can lead to equivocal implementation of the above-

mentioned procedure, and consequently to loss of accuracy in

determining �T. According to the deduction of (5), which only

considers A and B + C as Umweg channels, the R and �
parameters should have constant values as a function of vP and

vD, and then all ' scans of a given data set have to be ®tted

with the same values of R and �. The b parameter could also be

constant in the data set by considering only B and A + �C as

Aufhellung channels and taking the polarization coef®cients of

these channels into account, as shown in the Appendix of

MorelhaÄo (2003). These two pairs of channels provide the

second- and third-order approximations to the 3-BD

phenomenon. Even then, the R, � and b parameters can

present smooth variations as a function of the polarization

owing to diffraction of higher-order channels. Instrumental

effects can also contribute to the variations of some of these

parameters. Therefore, as a general rule, none of these par-

ameters are global variables in the sets of ' scans ± this is a

revision of suggestions in earlier papers (MorelhaÄo & Kycia,

2002; MorelhaÄo, 2003). Although, eventually, an accurate

value of the triplet phase can be obtained by assuming that

some of them are constants. The only true global variable is

the triplet phase itself.

Well elaborated computer algorithms capable of extracting

the value of �T from a polarization-dependent set of ' scans

have not yet been developed. Based on the arguments

outlined above, the algorithm has to ®nd the parameter vector,

p = ['0, w, R, �, b, �T], of each ' scan that provides the best

possible ®tting for a given value of �T. Since �T is common to

all ' scans, the algorithm also has to search for the value of �T
that allows the whole data set to be ®tted. No constraints

should be set to '0, w, R, � and b in any ®tting, but some

limited range of variation can be imposed, as for the value of

R, which should be kept close to the value obtained by

condition (i) mentioned above. An extra parameter due to

instrumental broadening can also be included in p and, as far

as it represents a symmetrical function of ', no systematic

errors will be generated in �T. The task suggested here for such

an algorithm is impossible to accomplish by manual ®tting of

the ' scans. Even to a computer, it is an enormous task. To

give an idea, if the data set is composed of six ' scans, there

will be 37 parameters (6 � 6 + 1: 6 scans, 6 parameters to each

scan, and �T to whole data set) to be adjusted by the algorithm.

Developing an algorithm to accomplish such a task is an open

opportunity in this ®eld of research.

To provide some theoretical evidence that it is worth

investing effort in developing a phasing algorithm based on

(5), the proposed procedure will be applied to a few sets of

simulated ' scans, for perfect and non-perfect crystals. The

latter is obtained by arti®cially adding symmetric positive

curves to those from a perfect crystal. Note that for such a

demonstration of phasing equation (5) itself could generate

the simulated ' scans to be used as the input data. Instead, the

dynamical theory of n-beam diffraction is used. There are

some reasons for this choice, besides giving more credibility to

the procedure. Reason 1: ®gure out if the parameter � is also

required for ®tting the pro®les of a perfect crystal or if it can

be assumed as zero a priori; Reason 2: when thickness fringes

are present in the pro®les, verify if after convolution with an

instrumental broadening function the asymmetry of the ®nal

pro®le still preserves the phase information; and Reason 3:

checking if the b parameter can properly take Aufhellung into

account.

7. Theoretical results

7.1. Dynamical simulation of three-beam diffraction

The n-beam diffraction of X-rays in crystals, when treated

by the plane-wave dynamical theory of diffraction, is basically

a problem of solving the eigenvalues and eigenvectors of a

2n � 2n square matrix, the so-called fundamental equations

of the dynamical theory. They are derived from Maxwell's

equations in a medium where the complex dielectric

susceptibility is periodic. The eigenvalues are the changes in

the wavevector components, along the crystal surface-normal

direction, of the allowed propagation modes for X-ray waves;

and the eigenvectors are the � and � components of the

wave®elds assigned to each propagation mode. Here, for a

given crystal orientation, the eigenvalues and eigenvectors are

calculated according to Colella's formalism (Colella, 1974).

The intensities, In (n = 0, A, B), of the diffracted beams from a

Acta Cryst. (2003). A59, 470±480 MorelhaÄo � Accurate triplet phase determination 475

research papers

Figure 3
Reciprocal-space Ewald construction of the three-beam diffraction used
here for demonstrative phasing purposes. A, B and C correspond to the
diffraction vectors of the �226 (primary), �3�13 (secondary) and 133
(coupling) re¯ections of a cubic lattice. kA and kB are Bragg-re¯ected
beams since the outward surface normal is 001. The ' axis is along the
diffraction vector A and ê � sin��̂ ÿ cos��̂ is the polarization direction
of the incident beam where �̂ � k̂0 � k̂A= sin 2�A and �̂ � �̂ � k̂0:
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crystal plate are obtained by matching the total � and �
components of the propagation modes with the � and �
components of the incident and diffracted beams at both

crystal surfaces (top/bottom), as described by Chang (1984). It

is equivalent, in practice, to applying the boundary conditions

of the electromagnetic ®elds at both surfaces, as used by

Weckert & HuÈ mmer (1997). Experimental parameters like

divergence, spectral bandwidth and mosaicity are usually

taken into account by convoluting the plane-wave dynamical

pro®les with a broadening function. This procedure is also

adopted here. The intensity pro®les of the primary beam (n =

A) as a function of the crystal ' rotation is obtained after

convolution with a Gaussian (FWHM = 1100), i.e.

PDyn�'� �
R�1

ÿ1
IA�'ÿ u�G�u� du: �9�

In Bragg diffraction geometry for a thin crystal, it is not

necessary to integrate over the rocking-curve angle of the

primary re¯ection to observe the interference effect in the '
scans. The effect is present at the maximum of the rocking

curve, as pointed out by Weckert & HuÈ mmer (1997).

The diffraction geometry of the particular 3-BD chosen for

general comparison purposes is depicted in Fig. 3. It consists of

two Bragg-re¯ected beams in a 2 mm thick plate of a cubic

crystal where �=a = 0.2132 (wavelength/lattice parameter).

The primary (A), secondary (B) and coupling (C) re¯ections

are �226, �3�13 and 133, respectively, and the outward surface

normal is 001. The modulus and phase of the structure factors

assigned to these re¯ections are |FA| = 44, |FB| = |FC| = 152,

F000 = 328, �A = 0 and �B = �C = 20�. Then, the triplet phase

value is �T = 40�. The polarization angle, �, speci®es the

polarization direction of the incident beam according to the

de®nition given in Fig. 3. Fig. 4(a) shows the ' scans as a

function of � for the `out±in' rotation sense, equation (8).

Another set of dynamical ' scans, calculated for |FA| = 88 ± the

only difference with those in Fig. 4(a) ± is shown in Fig. 4(b).

For the sake of simplicity, let us call PDyn4(') and PDyn8(') the

dynamical pro®les (' scans) simulated with |FA| = 44 and |FA| =

88, respectively, while PDyn(') will refer to both.

7.2. Fitting dynamical profiles with the general parametric
equation

Fitting procedures always request an error function to guide

their improvement. The pro®les P(') generated by (5) have

been compared to the dynamical ' scans, PDyn(') in Fig. 4, by

means of the error function

E��p� � �N ÿ 1�ÿ1
PN

n�1

jP�'n; p� ÿ PDyn�'n�j; �10�

where p = [�'0, w, R, �, b, �T] is the vector of adjustable

parameters for a given polarization angle � and N is the total

number of data points in the scan. �'0 is a correction in the

theoretical center of the curves, '0,B, when calculated by

Bragg's law (Cole et al., 1962), so that '0 = '0,B + �'0 in (8).

Figure 4
Azimuthal ' scans of the �226=�3�13 three-beam diffraction (A=B, Fig. 3) as
a function of the polarization angle �, whose values are shown at the left-
hand side of each curve. Open circles: simulated data by the n-beam
dynamical theory, equation (9). (a) PDyn4(') (|FA| = 44) and (b) PDyn8(')
(|FA| = 88), see x7.1 for more details. Dark lines: best-®tting P(') curves
generated by equation (5) with the parameter vectors given in Table 1.
Gray lines: PnPC(') standing for the pro®les of a non-perfect crystal
arti®cially generated by adding an extra 1

2P(', � = 0, b = 0) symmetrical
contribution to PDyn4('). All sets of pro®les have been normalized by the
respective maximum of the primary intensity obtained when � = 90�.
�' = ' ÿ '0.
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Before calculating E�(p), P(') is also convoluted with the

instrumental Gaussian (FWHM = 1100) as in (9).

Since the Bragg angle of the primary re¯ection has been set

to 45�, the �, b and �T parameters do not affect the pro®le of

the simulated ' scan at � = 0. Then, the R=R0 ratio can be

unequivocally determined from peak ®tting. R0 is a reference

value obtained from the maximum of the peak as

�PDyn�'0��1=2=vD. For the PDyn(') sets in Fig. 4, R0 = 1.6864

(jFAj = 44) or R0 = 0.9434 (jFAj = 88). Note that in the absence

of dynamical diffraction effects (primary extinction) R=R0 = 1

regardless of the state of linear polarization.

The versatility of (5) in ®tting pro®les taken at different

polarization (� 6� 0) allows all dynamical ' scans in Fig. 4,

PDyn(') (open circles), to be ®tted with the same �T value,

which is known in this case. Then, with �T = 40�, the other

parameters of p are adjusted to minimize the error function.

The PDyn4(') pro®les (Fig. 4a) are reproduced with b = 0, and

it makes the adjustment quite a simple procedure because R

and � do affect, in the ®rst order, the maximum and the

minimum of the interference curves, respectively. On the other

hand, the four PDyn8(') pro®les (Fig. 4b) could not be repro-

duced with b = 0. Instead, they were reproduced by keeping

� = 1 and adjusting R and b. The values of �'0, w, R=R0, 1ÿ �2

and b thus obtained are given in Table 1, and the respective

best ®tting P(') curves (dark lines) are those compared to

PDyn(') in Fig. 4.

To arti®cially simulate the effects of crystalline defects in

3-BD experiments, i.e. to simulate interference pro®les of non-

perfect crystals, PnPC('), a symmetrical contribution of 50%

(just a percentage between 0 and 100%) has been added to

PDyn4('). In other words, PnPC(') = PDyn4(') + 0.5P(', p),

where p is given in Table 1 but with � = 0. Both sets of pro®les,

PDyn4(') (open circles) and PnPC(') (gray lines), are seen in

Fig. 4(a). The intensities of their base lines correspond to the

value of v2
P since they were normalized by the respective

primary intensity obtained when � = 90� (vP ' 1). Note that,

after normalization, the addition of 50% actually represents

33% of symmetrical contribution. The ®tting procedure of

adjusting �'0, w, R=R0 and 1ÿ �2, while �T = 40� and b = 0 was

also applied to PnPC('); the results are shown in Table 1

(columns 6 and 7). The respective values of �'0 and w are not

shown because they are the same as those in columns 2 and 3.

Although the best-®tting curves for PnPC(') are not shown in

Fig. 4(a), the agreements are of the same quality as those

obtained between P(') and PDyn4(').

7.3. Examples of phasing procedures

Demonstrative phasing procedures are applied to the

pro®les in Fig. 4. They explore the fact that �T must have a

common value for all ' scans, but it is assumed to be unknown.

In the absence of ef®cient ®tting and phasing algorithms, the

procedures adopted here make use of predetermined values of

�'0 and w. Then, for a given �T, the error function, E�(p), of

each ' scan is minimized by adjusting R and � (b = 0) or R and

b (� = 1), and then added up to the collective error function

S��T� �
P

� 6�0

E��p�: �11�

In fact, for the R and � parameters, the values of R=R0 and

1 ÿ �2 have been adjusted instead of R and � themselves. The

adjustment consists of simple time-consuming double-loop

computer routines that perform mesh scans with resolution of

0.01 in R=R0 and 1 ÿ �2 or in R=R0 and b. The ' scan at � = 0

provides the value of R0 but E0(p) is not considered in the sum

of (11) because it is phase insensitive (vP' 0). Fig. 5 shows the

minimization curves of S(�T) as a function of �T for all sets of

pro®les in Fig. 4, i.e. for PDyn4(') and PnPC('), for their

respective best-®tting P(') pro®les, and also for PDyn8(').

8. Discussion

Some features in the dynamical simulation of the chosen 3-BD

case (Fig. 3) deserve a few comments: (i) A relatively weak

primary re¯ection was necessary to reduce Aufhellung in the

sets of PDyn4(') and PnPC(') pro®les. It allows both sets to be

®tted with b = 0, which was helpful in demonstrating that the �
parameter can properly take into account a symmetric positive

distortion of the pro®les; for example, the comparison of

columns 5 and 7 of Table 1. When the strength of the primary

re¯ection is increased, from jFAj = 44 to jFAj = 88, Aufhellung

becomes more signi®cant, so that the PDyn8(') pro®les cannot

be reproduced with b = 0. (ii) The triplet phase value of 40�
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Table 1
Parameter vectors p = [�'0, w, R, �, b, �T] of P('), equation (5), used to reproduce PDyn4('), PnPC(') and PDyn8(') at different polarization angles, �, and
for a common value of the triplet phase, �T = 40�.

The sets of dynamical pro®les PDyn4(') and PDyn8(') were calculated for |FA| = 44 and |FA| = 88, respectively. �'0 and w are in arcseconds. 1ÿ �2 and b stand for the
quantities of positive and negative symmetrical components of the pro®les, as de®ned in P^('), equation (6b). R0 is a reference value de®ned in x7.2.

PDyn4(') PnPC(') PDyn8(')

� (�) �'0 w R=R0 1 ÿ �2 R=R0 1 ÿ �2 �'0 w R=R0 b

0 ÿ1.2 9.7 1.23 ± 1.23 ± ÿ1.2 9.7 1.23 ±
20 ÿ0.7 10.4 1.12 0.29 1.11 0.67 ± ± ± ±
30 0.3 9.7 1.16 0.26 1.14 0.66 ± ± ± ±
45 1.2 9.4 1.18 0.24 1.18 0.62 1.4 6.5 1.29 0.42
60 1.2 8.6 1.22 0.19 1.22 0.59 ÿ1.4 6.5 1.27 0.45
75 0.9 8.3 1.24 0.17 1.24 0.58 ÿ1.4 6.5 1.25 0.46
90 0.6 7.9 1.27 0.14 1.27 0.57 ÿ1.4 6.5 1.23 0.41

b = 0, R0 = 1.6864 � = 1, R0 = 0.9434
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has been chosen mostly to enhance the visual effects of the

asymmetries in the PDyn4(') and PnPC(') pro®les. Since the

primary re¯ection is weak and the crystal very thin, a triplet

phase value of, for instance, ÿ60� would produce nearly

symmetric positive pro®les even at � polarization (� = 90�). It

does not make any difference to the phasing procedures, but

all pro®les in Fig. 4(a) would be very like the one at � = 0. (iii)

The primary re¯ection axis, [�113], tilted from the surface-

normal direction, [001], avoids the Bragg-surface diffraction

geometry. This particular geometry makes the simulation of

the pro®les by the n-beam dynamical theory signi®cantly more

complicated (Avanci & MorelhaÄo, 2000). (iv) The numerical

precision required for solving the equations of the n-beam

dynamical theory have also limited the crystal thickness. (v)

The Gaussian width (FWHM) of 1100 was the minimum value

necessary to average out the thickness fringes of the dy-

namical pro®les. The total integration range in (9) is 3 FWHM.

8.1. Symmetric/asymmetric decomposition of the interfer-
ence profiles

The 1 ÿ �2 quantities of the symmetrical component found

in PDyn4('), column 5 of Table 1, are intrinsic of the dynamical

diffraction simulation speci®ed in x7.1. Any change in thick-

ness, phase, scattering geometry, experimental parameters

(Gaussian width), . . . can change the values of these intrinsic

quantities. For phasing procedures based on equation (5), the

fact of ®nding � < 1, even in perfect crystals, is not a problem,

as far as this parameter is not assumed equal to 1 a priori. The

important fact is that, when arbitrary quantities of symmetric

positive components are added to the pro®les, the � parameter

does account for these extra quantities as shown by the values

in column 7 (Table 1). It demonstrates the potential of the

approach in decomposing the pro®les into their symmetric

and asymmetric components, as given in equation (6), without

affecting the triplet phase values. This is the fundamental fact

that certi®es this proposal of phasing procedures for non-

perfect crystals.

The majority of the parameter values listed in Table 1 vary

as a function of the polarization angle. Since in the ®ttings, for

� 6� 0, � and b parameters were not simultaneously adjusted,

the exact interpretation of the observed variations are very

dif®cult. There is a correlation between them, in the sense that

the total amount of symmetrical distortion, P^(') [equation

(6b)], is the result of the sum of positive and negative

components, respectively determined by 1 ÿ �2 and b. It is

important to note that these components have different

dependencies with the polarization angle, as already pointed

out [see (iv) in x6]. The product �R in P�(') [equation (6a)]

establishes the correlation between � and R. Then, as one

parameter is kept constant, variations as a function of polar-

ization are observed in the other parameters. Besides, third-

order Umweg channels (those given in x2 with three bounces)

do involve the re¯ection A, whose polarization coef®cient, vP,

varies signi®cantly with �. It is an expected source of variation

to R. One last fact to consider is the effect of the Gaussian

convolution with the thickness fringes, whose amplitude

patterns also change with polarization. This effect is probably

related to the observed variations in �'0 and w, as well as to

the intrinsic 1 ÿ �2 quantities of the symmetrical component

found in the dynamical pro®les.

Although a detailed understanding of the reasons behind

the variations of �'0, w, R, � and b can be quite interesting, it

is not of practical relevance. Each 3-BD case, when investi-

gated theoretically or experimentally by equation (5), can

present completely different sets of parameter vectors. The

real challenge is how to determine the triplet phases by

systematic procedures, starting with no clue on the values of

the parameters or even on their range of variation. Any

attempt to apply (5) for phasing purposes, whether for

experimental or simulated data sets, brings more information

to the knowledge of how to develop the procedures. That is

the objective of the phasing attempts described in x7.3, as

discussed below.

8.2. Accuracy of the phasing procedures

For a given set of polarization-dependent ' scans, as soon as

the direction of the beams (k0, kA and kB; Fig. 3) and the

rotation sense of the crystal are known, the triplet phase can

be found in one of two intervals, M1: ÿ90 < �T < 90� or M2:

90 < �T < 270�. The criteria, deducible from the pro®les in Fig.

2, are the following:

(i) {P('0 ÿ �') < P('0 + �') and `out ! in'} or {P('0 ÿ
�') > P('0 + �') and `in ! out'} ) M1;

(ii) {P('0 ÿ �') > P('0 + �') and `out ! in'} or {P('0 ÿ
�') < P('0 + �') and `in ! out'} ) M2;

where �' > 0, and the expressions `out ! in' and `in ! out'

are de®ned in equation (8). Note that this criterion is for

cos  > 0 in equation (5), otherwise the above relationships are

reversed, (i) ) M2 and (ii) ) M1 for cos  < 0.

A second step in the procedure is to determine R0. In the

�=2 scattering geometry (k0 � kA = 0), R0 is measured from the

' scan with � polarization (� = 0). Knowledge of the R0 value

allows the adjustment of R=R0 to be restricted to values close

to 1. The minimizations of the collective error functions in

Fig. 5 were carried out with 1 � R=R0 � 1.4.

Establishing constraints to the variation to R=R0 is one of

the most important points in the procedure to avoid systematic

errors. In the numerical examples given at the end of x5, the

pro®les generated with the parameter vector p1 could be

reproduced with p2 just because the values of R were freely

adjusted. Once R=R0 is properly constrained, systematic errors

are eliminated and the ®nal accuracy in �T depends on parti-

cularities of each 3-BD case such as the quantities of

symmetric positive components (crystal imperfections) and

the relative strengths of the primary and detour waves, i.e. the

value of R0 itself. The values assigned to �'0 and w of each '
scan also affect the ®nal accuracy.

Minimization of S(�T) for P(') pro®les (as input data)

provides a sense of the maximum accuracy that can be

achieved in triplet phase determination. Such minimization

curves show the inherent phase sensitiveness of a given 3-BD

case. It is because there will be a set of parameter vectors that
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exactly reproduce the pro®les (S = 0). For the case exploited

here, these S(�T) curves (gray symbols in Figs. 5a and 5b) were

calculated for the best-®tting P(') pro®les of PDyn4(') and

PnPC('). The relevant point to stress is that, although the

minima occur at 40�, they are not well pronounced. The

minima are ¯ats and their widths establish the maximum

possible accuracy, or the inherent accuracy, for each set of

pro®les, which are �5 and �15� for the PDyn4(') and PnPC(')

sets, respectively.

The dynamical PDyn4(') pro®les, Fig. 4(a), present different

values of �'0 and w when analyzed by equation (5). It is

helpful to demonstrate how estimating the values of these two

parameters can compromise accuracy. When their values are

mistaken, there is a loss in accuracy that can be seen by

comparing the two minimization curves in Fig. 5(a). With

�'0 = ÿ1.200 and w = 9.700 assigned to all ' scans, the accuracy

is about �10� against the inherent one of �5�. In Fig. 5(b),

both curves (open and gray squares) provided the same

accuracy, since the predetermined values of �'0 and w

(columns 2 and 3 of Table 1) were used to minimize S(�T) for

the PnPC(') pro®les.

It follows directly from equation (5) that a small value of �
reduces the contribution of the interference term into P(')

and then the sensitivity to determine �T. The pro®les of a non-

perfect crystal, PnPC(') in Fig. 4(b), have 33% of symmetrical

contribution. It provides a reduction of about 30% in the

values of �, calculated from columns 5 and 7 of Table 1.

Consequently, there is a loss of accuracy that can be noted by

comparing the inherent accuracy of the PDyn4(') and PnPC(')

sets of pro®les, �5 and �15�, respectively. The S(�T) curve in

Fig. 5(b), for PnPC('), is minimized around the expected triplet

phase value of 40�. Therefore, it demonstrates that the ¯ex-

ibility of equation (5), owing to the � parameter, eliminates

systematic errors due to crystalline imperfections; errors such

as those observed in the numerical examples at the end of x5.

However, the phase sensitiveness is reduced as the quantity of

symmetrical distortion increases.

Indirectly, the value of R0 also affects the phase sensitive-

ness. If R0 > 1=vD, the condition speci®ed in (iii) of x6 cannot

be ful®lled. Although Aufhellung is signi®cant in the PDyn8(')

pro®les (Fig. 4b), the best accuracy in �T is observed for this set

of pro®les as seen by the S(�T) curve (open triangles) in Fig.

5(c). The reason may just be the value of R0 = 0.943, which is

smaller than the value of 1.686 measured in the other sets of

pro®les.

The ®nal example to consider is the situation where it is not

obvious which of the � and b parameters can be ®xed or if both

need to be adjusted to ®t the whole set of ' scans. This

dilemma can be solved by carrying out two minimizations of

S(�T), one where b = 0 and another where � = 1. Fig. 5(c) shows

both S(�T) curves for the PDyn8(') pro®les. With b = 0 (gray

triangles), there is a minimum close to �T = 50� but the ®ts are

of poor quality. On the other hand, with � = 1 (open triangles),

the minimum is at the right �T value, and the very good ®ts

shown in Fig. 4(b) are achieved. PDyn8(') pro®les at polari-

zation angles smaller than 45�, as � = 20 and 30�, could not be

®tted in any of these two hypotheses (b = 0 or � = 1), and then

they were not included in the sum of S(�T). To include them in

the sum, it would necessarily be a minimization scheme where

R=R0, � and b are simultaneously adjusted

8.3. Final remarks

The phasing procedures demonstrated above can be

applied, in principle, to crystals with completely unknown

structures. However, 3-BD cases must be identi®ed among

other cases of n-BD (n > 3), and the direction of the secondary

beam (kB, Fig. 3) determined. The procedures based on

minimization of S(�T) implicitly assume that all asymmetries

of the 3-BD pro®les are due to interference of photons scat-

tered by Umweg channels. Any extra feature that can induce
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Figure 5
Minimization of the collective error function, S(�T) [equation (11)], for
the polarization-dependent sets of ' scans in Fig. 4: (a) PDyn4('); (b)
PnPC('); (c) PDyn8('). In (a) and (b), R=R0 and 1 ÿ �2 of each ' scan is
adjusted with b = 0, and the sum in S(�T) goes over � = 20, 30, 45, 60, 75
(not shown in Fig. 4a) and 90�. Curves with open symbols (circles and
squares only) stand for ®ttings where: (a) �'0 =ÿ1.20 0 and w = 9.70 0 for all
' scans (®rst row of Table 1, � = 0�); and (b) �'0 and w values are those
predetermined in columns 2 and 3 of Table 1. On the other hand, curves
with gray symbols (circles and squares only) are the minimization of S(�T)
for the respective best-®tting P(') pro®les (Table 1). The gray curves in
(a) and (b) represent the maximum possible accuracy on which �T can be
determined for this 3-BD case, whose triplet phase value is 40�. In (c), the
sum goes over � = 45, 60, 75, and 90� (Fig. 4b), and R=R0 and 1 ÿ �2 (b =
0) are adjusted only for the curve with gray triangles, while R=R0 and b
(� = 1) are the adjustable parameters for the S(�T) curve with open
triangles. �'0 and w values are those predetermined in columns 8 and 9
of Table 1.
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asymmetrical changes in the characteristic pro®les must be

carefully investigated. As reported in the literature (Thor-

kildsen et al., 2001, and references therein), the 3-BD pro®les

of Laue cases (transmitted primary beam) are strongly in¯u-

enced by the PendelloÈsung effects depending on the thickness

of the crystal. Therefore, for these cases, the viability of the

suggested phasing procedure depends on crystal thickness.

Applications of the phasing procedures in practice, i.e. in

experimental sets of ' scans, add in a few minor instrumental

dif®culties that have to be overcome. Tiny misalignments of

the experimental set-up, in general, do produce small shifts in

�'0 as a function of �. Any manual assignment of values to

�'0 (of each ' scan) does certainly compromise accuracy, as

demonstrated in Fig. 5(a). In most synchrotron beamlines, the

X-ray optics is different in horizontal and vertical scattering

planes. It implies that the width of the instrumental broad-

ening function, which convolutes with the intrinsic width w in

equation (9), is different at each polarization. Statistical noise

in radiation detection certainly raises the minimum values of

the error functions, but it does not directly imply loss of

accuracy. To properly consider such minor dif®culties, the

minimization schemes of S(�T) must also include �'0, w and

instrumental widths adjustable to each ' scan. It emphasizes

how important the algorithm outlined in x6 is for practical

applications of the phasing procedures suggested in this

article. Only with such an algorithm in hand can the practical

validity of the procedures be veri®ed for a wide range of 3-BD

cases and the relevance of secondary features, as statistic noise

and background corrections will then be properly investi-

gated.

9. Conclusions

In this article, a general parametric equation for ®tting inter-

ference pro®les of three-beam X-ray diffraction is proposed.

The pro®les are decomposed in asymmetric and symmetric

components when analyzed by the equation. It allows rela-

tively accurate triplet phase determination in perfect as well as

in non-perfect crystals. The concept of non-perfect crystals is

restricted to those where crystalline imperfections only

provide extra amounts of the symmetrical component in the

interference pro®les. The symmetrical components cannot be

unequivocally identi®ed from a single ' scan. Therefore, a

phasing procedure is also suggested. It consists in collecting a

polarization-dependent set of ' scans and minimization of the

collective error function. The great advantage of the proce-

dure relies on its potential to be carried out completely

automatically in crystals with unknown structures and to

provide a sense of the accuracy of the measured triplet phases.
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