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Physical X-ray phase measurements are possible via three-beam diffraction ex-
periments. Generalized and simple theoretical approaches have become a neces-
sity for accessing this piece of information by means of practical and systematic
procedures. Consistency of probabilities for the X-ray photons entering and leav-
ing the crystal are exploited here to derive theoretical approaches accounting for
Aufhellung, an energy balance effect among the simultaneously diffracted beams.

1. Introduction

In the n-beam X-ray diffraction phenomenon, or multiwave
diffraction, the reduction in the intensity of a two-beam diffrac-
tion owing to the excitement of other beams is known as Aufhel-
lung (Wagner, 1923; Chang, 1984). It is directly related to the
balance of energy among simultaneously diffracted beams, and
consequently, any theoretical description of the phenomenon
must take Aufhellung into account to be in agreement with the
most solid foundation of Physics, which is the conservation of
energy.

For decades, the multiwave diffraction in single crystals has
been extensively studied since it allows physical measurements
of reflection phases, more precisely the invariant phase triplets
(see reviews by Chang, 1984, 1998; Colella, 1995; Weckert
& Hümmer, 1997). The dynamical theory – the solution for
the propagation of X-rays in crystals deduced from Maxwell’s
equations – describes all elementary concepts of crystal optics
for X-rays, and also the n-beam diffraction. It provides the prop-
agation modes of the wavefields in a perfect periodic infinite
medium. Boundary conditions are required for determining the
amplitudes of the diffracted waves in a finite crystal, which
account for the energy balance among the diffracted beams.
However, great efforts have also been dedicated for developing
other theoretical approaches that embrace relevant aspects of
the diffraction physics, such as crystalline imperfections, and
simultaneously, facilitate feasible analysis of experimental re-
sults.

The available approaches are limited solutions, mostly for 3-
beam diffraction (3-BD) cases, based on 2nd-order (Juretschke,
1982; Høier & Marthinsen, 1983; Shen, 1986; Hümmer & Billy,
1986; Chang & Tang, 1988; Shen & Finkelstein, 1990; Shen &
Huang, 2001; Stetsko et al., 2001b) and 3rd-order approxima-
tions derived either from Takagi-Taupin treatment (Thorkildsen
et al., 2001; Thorkildsen & Larsen, 2002; Okitsu, 2003) or from
the fundamental equation of dynamical diffraction theory (Stet-
sko et al., 2004); well-organized reviews on succeeding devel-
opments in this research field can be found in recent articles
(Okitsu, 2003; Thorkildsen et al., 2003). In most approaches,
the diffracted intensities are given by

IG � c
2 � 0

����� N�
n � 1

Dn �G ����� 2 (1)

where the amplitude of the electric displacement field is written
as a series expansion, and each term of the expansion, Dn �G, has
its maximum contribution, in modulus, at the maximum of the
3-BD excitement condition.

The motivation of this work is the fact that it is impossible to
take Aufhellung into account by solutions in pure series expan-
sion of the field as defined in Eq. (1); the inclusion of higher-
order terms do not account for Aufhellung as suggested for sev-
eral authors (see, for example, Stetsko et al., 2004). The reason
is very simple, ����� N�

n � 1

Dn �G ����� 2 � ����� N � 1�
n � 1

Dn �G ����� 2
occurs exclusively due to interference effects. It means that each
additional term can reduce or enhance the diffracted intensity
depending on its relative phase to the other terms of the se-
ries expansion. Individually, or in the absence of interference
effects, each term represents some amount of energy contribut-
ing to the diffracted intensity, which is the opposite effect of
Aufhellung.

The deficiency of series expansion form of solution to ac-
count for Aufhellung can be better demonstrated by means of
an example. Let us assume a small non-absorbing crystal where
third-order terms are negligible, as well as higher order ones,
i.e. Dn 	 3 �G 
 0. Then,

I �0 � c
2 � 0

���D �0 � D � (A)

2 � 0 ��� 2
I �A � c

2 � 0

��D �1 �A �� 2 (2)

are the diffracted intensities under a two-beam excitement con-
dition. When another beam is excited, for instance IB, the
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diffracted intensities are given by

I0 � c
2 � 0

���D0 � D(A)

2 � 0 � D(B)

2 � 0 ��� 2
IA � c

2 � 0

���D1 �A � D(B)

2 �A ��� 2 (3)

IB � c
2 � 0

���D1 � B � D(A)

2 � B ��� 2 �
(A,B) superscripts are used on second-order waves to identify
the first-order ones originating them. For instance, D(A)

2 � 0 stands
for the rescattering of D1 �A towards the forward-transmitted
wave, D0. Since the incident beam is constant in time, the to-
tal intensity of the diffracted waves under two-beam and three-
beam diffraction conditions are equal, i.e.

I �0 � I �A � I0 � IA � IB

�
(4)

Besides inherent difficults owing to convergence properties of
the series expansions, another challenge is the time-dependent
description the 3-BD, or any multi-beam diffraction case, by
series expansion solutions. It is summarized in the above exam-
ple, in how to go from Eq. (2) to Eq. (3) without violating the
equality in Eq. (4). In more specific words, it is necessary to de-
scribed not only how the extra terms in Eq. (3) are excited, but
also how the terms already excited in Eq. (2) are affected by the
excitement of the new beam, IB in this case. For a qualitative
description, one may assume that D0 � D �0, D(A)

2 � 0 � D � (A)

2 � 0 , and
D1 �A � D �1 �A, and that the extra terms in Eq. (3) are switched
on as the crystal rotates to excite IB. However, in this phe-
nomenological description the total diffracted intensity is not
preserved, and that ends any possibility to correctly account for
Aufhellung. Eventhough, such description can provide an iden-
tical result in the case of a very particular coincidence where
D(B)

2 � 0 and D(B)

2 �A would provide destructive interferences with the
other terms in I0 and IA. These destructive interference would
account for the exact amount of intensity transfered to IB. Al-
though some phase relationships may exist among the diffracted
waves, they vary from one crystal to another since the struc-
ture factor phases are intrinsically related to the internal three-
dimensional structure of the crystals. Therefore, phase relation-
ships among the series expansion terms are not responsible for
the balace of energy among the diffracted beams, i.e. for the
equality in Eq. (4) of the above example.

To properly account for Aufhellung, we proposed here a
general description of the multi-beam diffraction phenomenon
based on consistency of probabilities for X-ray photons enter-
ing and leaving the crystal. Emphasis is due to the balance
of energy, which appears naturally in this description. It al-
lows convergent series expansion solutions applicable to 3-BD
cases where Aufhellung can not be neglected, as experimen-
tally demonstrated here. Interference of probability amplitudes
for photons – as defined for instance in the introduction of
Loudon’s book (Loudon, 2000) – is included to take phase sen-
sitivity of the 3-BD into account, and to provide mechanisms
to correctly estimate the contributions of higher order terms in
the solution of the diffracted wavefields. Moreover, the demon-

strative experimental dataset also carries some information on
chemical bounding-charges, as shortly discussed.

2. Three-beam X-ray diffraction by consistency of
probabilities

Figure 1
X-ray three-beam diffraction in crystals: (a) planar scheme of the involved A,
B, C, Ā, B̄, and C̄ reflections and k0, kA, and kB wavevectors; (b) diagram
of probabilities where each column represents the diffraction, rX (boxes), ex-
iting, dG (circles), and absorption, aG, probabilities for X-ray photons in the
beam G (G = 0, A, and B). The sum of these probabilities at each column
must be equal to 1. For instance, in the incident beam column (first column at
left), a forward-transmited beam of non-diffracted photons occurs only when
d0 � 1 � a0 � rA � rB � 0. All possible diffraction channels can be identi-
fied by following the loops of this diagrama, but in general the rX, dG, and aG

probabilities are dynamical variables changing at each loop.

Energy is conserved by preserving diffraction, exiting, and
absorption probabilities of X-ray photons traveling in a crystal.
Under 3-BD, the photons in one diffracted beam can be further
diffracted towards two other beams, as illustrated in Fig. 1(a).
Each diffraction bounces the photons from one beam to another,
which can be bounced again and again, or they can exit the crys-
tal before a next bounce if not absorbed by photoelectrons or
any other event that would prevent further diffraction. This is
represented as a schematic diagram in Fig. 1(b). There are dif-
ferent diffraction channels, or zigzag route (Kato, 1976), for the
photons before exiting the crystal. Channel A stands for incident
photons that interact once with the lattice and leave the crystal
by beam A, i.e. a single-bounce channel k0 � kA, where reflec-
tion A is the photon-lattice interactive agent. B+C is adouble-
bounce channel, k0 � kB � kA, B+C+C̄ a three-bounce chan-
nel, k0 � kB � kA � kB, and so on.

Because photons are quantum particles, interference of prob-
ability amplitudes occurs (Loudon, 2000), i.e. interference of
the wavefields diffracted by different channels exiting via the
same beam direction. However, in this description of the 3-BD
process, photons are initially considered as classical particles;
in this context, X-ray beams “...are streams of globules, like
bullets from a machine gun”. The wavefields are incorporated
later, for n-bounce channels according to the order of contribu-
tion desired in the solution of the diffracted fields.
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2.1. General formalism

For general multi-beam diffraction cases, the population,
PG � n � , of n-bounced photons in the beam G can be calculated by
introducing pG �H � n � as the X-ray photon diffraction probabili-
ties from beam H to beam G after n diffraction events (bounces),
then

PG � n � 1 � � �
H �� G

pG �H � n � PH � n � � (5)

P0 � 0 � � N0 stands for the incident number of photons per unit
of time, and the time-dependence of these probabilities are de-
termined by the crystal rotation, i.e. on how the crystal position
varies in time until the multi-beam configuration is achieved.

Assuming a slow time variation to assure that at any time in-
stant the populations are given by Eq. (5), their behaviors as a
function of n can be infered by the sum of diffraction proba-
bilites,

sG � n � � �
H �� G

pH �G � n � � (6)

These values are interconnected by consistency of probabilities
to exiting probabilites defined as

dG � n � � 1 � aG � n ��� sG � n � (7)

where aG � n � is the probability of the photons in the beam G to
be absorbed after n bounces. Since dG � n � is the fraction of n-
bounced photons that will effectively leave the crystal via beam
G, the diffracted intensities (in number of photons per unit of
time) outside the crystal are given by

IG �N � � N�
n � 1

dG � n � PG � n � � (8)

Note that, for N0 � 1 dG � n � PG � n � corresponds to the total prob-
ability of the incident photon to interact and to leave the crystal
via one of the n-bounce channels ending on beam G. It garan-
tees the balance of energy among the diffracted beams since

lim
N ��� �

G

IG �N � � N0 � (9)

and hence, the converge of the series expansion in Eq. (9). How-
ever, the diffracted intensities also depend on interference ef-
fects among the probability amplitudes of the different diffrac-
tion channels. To explicitaly shown this dependence, it is neces-
sary to replace the sum of probabilities by the modulus square
of the sum of wavefields, which leads to

IG �N � � K

����� N�
n � 1

�
dG � n � Dn �G ����� 2 (10)

where K converts wavefield square units to number of photons
per unit of time diffracted within a finity solid angle. The phys-
ical meaning of

�
dG � n � is to reduce, according to Eq. (7), the

probability amplitude of diffraction towards beam G when other
beams are excited, i.e. when the photons on beam G, inside the
crystal, have a non null probability of leaving the crystal via

other beams. Therefore, the series expansion terms of this solu-
tion do not necessarily have their maximum amplitude, in mod-
ulus, at the maximum of the multi-beam condition as found in
previous approaches, e.g. Eq. (1).

Figure 2
Populations of n-bounced photons, P � n  [Eq. (11)], in the diffracted beams in-
side a semi-infinity crystal, calculated for RA � RĀ, RB � RB̄ � 0 ! 16RA,
and RC � RC̄ � 0 ! 36RA where RX is the intensity reflectivity of reflection
X under 3-BD condition. (a) Laue-Laue case (sG � 1): [rA rB rĀ rC̄ rB̄ rC] =
[0.862 0.138 0.735 0.265 0.308 0.692]; (b) Bragg-Laue case (sA � 0 ! 8): [0.862
0.138 0.588 0.212 0.308 0.692]; and (c) Bragg two-beam case (sA � 0 ! 8,
RB � RC̄ � 0): [1.0 0.0 0.8 0.0 0.0 0.0]. The rX probabilities were ob-
tained as rA " B � s0RA " B/ � RA # RB  , rĀ " C̄ � sARĀ " C̄/ � RĀ # RC̄  , and rB̄ " C �
sBRB̄ " C/ � RB̄ # RC  .

Limited to 3-beam diffraction cases, the pG �H diffraction
probabilities are rewritten for sake of simplicity as rX where
X (= A, B, C, Ā, B̄, or C̄) indicates the Bragg reflection trans-
fering energy from beam H to beam G, as shown in Fig. 1(b).
Henceforth, Eq. (5) become

P0 � n � 1 � � rĀPA � n � � rB̄PB � n �
PA � n � 1 � � rAP0 � n � � rCPB � n � (11)

PB � n � 1 � � rBP0 � n � � rC̄PA � n � �
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2.2. Diffraction geometries and exiting probabilities

To achieve some insights on the intrinsic correlation among
diffraction geometries and exiting probabilities, a few cases are
discussed in this subsection.

In Laue-Laue diffraction geometry there are three diffracted-
’transmitted’ beams, as illustrated in the inset of Fig. 2(a). A
non-absorbing semi-infinity crystal in this geometry is repre-
sented by sG � 1, and hence aG � dG � 0. Since rA � rB � 1,
rĀ � rC̄ � 1, and rB̄ � rC � 1 the photons are bouncing endlessly
from one beam to another, and the photon populations tend to
constant non-null values, as shown in Fig. 2(a). No diffracted
beams are measured outside the crystal, IG � 0, since the pho-
tons will never reach the exiting surface at infinity. On the other
hand, for a finite crystal slab there would be a minimum num-
ber of bounces, nL, necessary for the photons to reach the exit-
ing surface. Then, for n

�
nL the exiting probabilities are zero,

dG 
 0, and the behavior of the populations are very similar to
that shown in Fig. 2(a); but, for n $ nL the populations vanish
and diffracted beams are measurables as IG 
&% PG � nL � since
dG � nL � 
 1 in Eq. (8).

A different situation occurs when absorption or exiting prob-
abilities are not null, and hence sG

�
1. In this case, all popu-

lations decrease as a function of n, as for instance depicted in
Fig. 2(b) where the only difference with respect to Fig. 2(a) is
that sA � 0

�
8, or dA � aA � 0

�
2. If dA � 0 the decrease of

the populations is owing to absorption only, and the diffracted
intensities are still zero. However, for 0

�
dA

�
0
�
2 some pho-

tons on beam A can reach an exiting surface and then IA $ 0.
In a semi-infinite crystal it means that the beam A must be a
Bragg-reflected beam; a Bragg-Laue diffraction geometry as il-
lustrated in the inset of Fig. 2(b). A Bragg-Bragg diffraction
geometry would require dA $ 0 and dB $ 0.

Away from the 3-BD condition, when only reflection A is ex-
citated, there is a total transference of energy (number of pho-
tons) from one beam to the other, as observed in Fig. 2(c). In
this particular example, all photons in the beam 0 are bounced
towards beam A, and 80

It is very convenient to take exiting and diffraction probabil-
ities as constant values instead of functions of n. These values
are dynamical variables changing at each bounce owing either
to the relative positioning of the exiting surfaces and polariza-
tion factors. In principle, it is possible to calculate the diffrac-
tion probabilities per unit of length and to compute the polariza-
tion factors for each sequence of reflections. However, before
upgrading the proposed approach to more realistic cases and to
include interference effects according to Eq. (10), it is neces-
sary to demonstrated that Eq. (8) is a time-dependent solution
capable to describe the excitament of beams without violating
the equality in Eq. (9), and hence capable to account for Aufhel-
lung.

2.3. Time-dependent solutions

The basic requirement for a time-dependent solution is to pre-
serve the sum of probabilities in Eq. (7) as one or more diffrac-
tion probabilities change in time owing to the crystal’s rotation.
The first effect to be analysed is the sharing of energy between

two reflections simultaneously diffracting a given beam, as for
instance the A and B, Ā and C̄, or B̄ and C reflections in Fig.
1(a).

Figure 3
Simultaneousness of diffraction events and their effects on the diffracted in-
tensities. (a) Reflection A occurs before reflection B: IA � RAN0, IB �
RB � 1 � RA  N0, and I0 � � 1 � RB  '� 1 � RA  N0. (b) Reflection B occurs before
reflection A: IB � RBN0, IA � RA � 1 � RB  N0, and I0 � � 1 � RA  '� 1 � RB  N0.
For time coincidental reflections, the outcome is the average of (a) and (b):
IA � RA � 1 � 0 ! 5RB  N0 and IB � RB � 1 � 0 ! 5RA  N0.

For this demonstration, assume a very small non-absorbing
crystal where RX is the kinematical intensity reflectivity of re-
flection X, so that IX � RXN0 and I0 �(� 1 � RX � N0. Note that,
according to this definition of reflectivity 0 ) RX ) 1. When
only reflection A is excited the non-null populations of photons
are P0 � 0 � � N0 and PA � 1 � � RAN0, and then, the kinematical
intensities according to Eq. (8) are obtained for d0 � 1 � RA,
rA � RA, and dA � 1, which satisfy d0 � rA � 1.

The problem in describing the excitement of reflection B,
when A is already excited, is that d0 � rA � rB $ 1 if we take
rA � RA and rB � RB. It implies that the previous exiting and
diffraction probabilities, d0 and rA, must decrease when reflec-
tion B is excited. It seems to be a complicated problem because
reflections A and B are simultaneous events in time; otherwise
would be very simple to calculate the diffracted intensities as
demonstrated in Fig. 3. In fact, the correct values of diffraction
probabilities are obtained from the average diffracted intensities
between the two hypothetical situations shown in Figs. 3(a) and
3(b).

rA � RA � 1 � 0
�
5RB � � rB � RB � 1 � 0

�
5RA � � (12a)

and
s0 � RA � RB � RARB

�
(12b)

Note that these equations have a perfect simmetry with re-
spect to the excitament of one reflection, B or A, when the
other, A or B, is already excited. It is an important condition
that must be present in any theoretical description of simultane-
ous diffraction processes. Eqs. (12) also provide how much the
previous diffraction probability varies owing to the other reflec-
tion, as well as the exiting probability since d0 � 1 � s0. This
solution always satisfy the consistency of probability, Eq. (7), if
the maximum value of s0, smax

0 , is given in the range from 0 to
1-a0 (a0 � 0 in non-absorbing crystals). This maximum value
occurs when both reflections are at their respective maxima.

To effectively calculate the sharing of energy between two
reflections, values either for smax

0 and * BA (the kinematical re-
flectivity ratio) must be provided. Then,
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RB � * BARA (13a)

and from Eq. (12b)

RA �,+ �.- + 2 � smax
0 / * BA (13b)

where +/� 0
�
5 � 1 � * BA � / * BA, and RA �B � smax

0 if RB �A � 0.
Every bounces of photons inside large crystals are local-

ized kinematical diffraction processes, as for instance assumed
by Darwin (1914) or Zachariasen (1945) when describing pri-
mary and secondary extinction phenomena. According to this
assumption, Eqs. (12) and Eqs. (13) are also valid for calculat-
ing the diffraction probabilities after n bounces, to which values
for smax

0 � n � are required. Moreover, the diffraction probabilities
for the other two couples of reflections, in Fig. 1(b), are also
calculated by analogous equations, i.e. rĀ 0 B̄ 1 and rC̄ 0 C 1 are ob-
tained by replacing A and B by Ā � B̄ � and C̄ � C � in Eqs. (13) and
Eqs. (12).

Knowledge on the smax
G � n � values as well as on the kinemat-

ical reflectivity ratios allow an almost-full description, besides
interference effects, of the 3-BD process as a function of the
crystal’s rotation. The great success of this approach is that at
any instant of time the condition imposed by Eq. (9) is always
satisfied, as demonstrated below.

2.4. Aufhellung

Occurance of Aufhellung as a direct consequence of energy
balance mechanisms is investigated here for a few hypothetical
cases, shown in Fig. (4), where the smax

G � n � are taken by constant
values as a function of n. It can be a very good approximattion
when the populations of photons become neglectable just after
a few bounces.

Azimuthal rotation of the crystal around the diffraction vector
of reflection A is a possible systematic procedure to also bring
reflection B to a diffraction condition, and hence to achieve the
3-BD configuration in Fig. 1(a). To describe the effects of the2

rotation on the diffracted intensities, RB � C̄ in Eqs. (12) are
now multipled by L � ∆ 2 � , a lorentzian function of unit weight,
L � ∆ 2 � 0 � � 1. ∆

2 � 2 � 2 0 stands for the deviation in the
rotation angle,

2
, from the 3-BD condition at

2
0.

For a give value of ∆
2

, the intensities are calculated by
Eq. (8), PG � n � by Eq. (11), rX by Eqs. (12a), and dG � n � �
1 � aG � sG by Eq. (12b). The RX values are obtained by
Eqs. (13); these reflectivity values do not depend on L � ∆ 2 � .
The exact calculation routine of the intensities profiles in Fig.
4 are given in Appendix A, where six input values are required:
the structure factor modulii, 3 FA 3 � 3 FĀ 3 , 3 FB 3 � 3 FB̄ 3 , and3 FA 3 � 3 FĀ 3 , as well as the smax

G values. It has been implici-
taly assume, for this demonstration only, that the kinematical
intensity-reflectivity ratios are given by the modulus square of
the structure factors, e.g. * BA � 3 FB 3 2/ 3 FA 3 2 in Eq. (13b).

As the crystal rotates, we go from a two-beam case, I0 and
IA, to a three-beam case where IB is also excited. But, at any
instant,

I0 � IA � IB � N0

since aG � 0, as can be observed in all cases shown in Fig. 4.
This is the relevante point that we have wished to demonstrate.

Some interesting situations are investigated in Fig. 4. Since
IB varies from 0 to a maximum value at ∆

2 � 0, Aufhel-
lung occurs on the two-beam intensities only. Reduction in the
diffracted-’transmited’ beam, I0, is observed in all cases, al-
though not visible in Fig. 4(d), mainly because of the chosen
high value for smax

0 � 0
�
8; it favors the transference of energy

to the other beams. In Fig. 4(a) Aufhellung is also observed
in IA, and the major reason is the fact that the exiting prob-
abilities via beam B are higher than via beam A; dA

�
dB

although 3 FA 3 � 3 FB 3 . By just exchanging the ration between
these exiting probabities, IA shows an Umweganregung peak
(Renninger, 1937), Fig. 4(b), instead of the Aufhellung dip in
Fig. 4(a). When reflection B is forbidden, 3 FB 3 � 0, the inten-
sity of beam B is due to higher order channels, e.g. A+C̄, but
Aufhellung is still observed, Fig. 4(c). It is also a dominant ef-
fect on IA when reflection C is forbidden, 3 FC 3 � 0, in Fig. 4(d).

Figure 4
Energy balance effects on three-beam diffraction intensities as a function of az-
imuthal scans around the diffraction vector of reflection A, which is kept excited
during the scans. (a) Bragg-Bragg case calculated with the parameter vector p
= [ 4 FA 454 FB 454 FC 4 smax

0 smax
A smax

B ]=[2 4 6 0.8 0.4 0.2]; (b) Bragg-Laue case: p =
[2 4 6 0.8 0.4 0.8]; (c) p = [2 4 0 0.8 0.1 0.4]; and (d) p = [2 0 6 0.8 0.4 0.1].
The intensities are calculated by Eq. (8), see Appendix A for more details. The
p values provide here have been chosen for illustrative purposes only.

2.5. Amplitude and interference of the diffracted wavefields

There is an infinity number of possibilities for the rH values
depending on diffraction geometry, absorption, and reflectivity
of the involved reflections. All 3-BD cases are describable by
some set of rH values under the scope of Eq. (??), which was
useful to demonstrate the physical meaning of the Aufhellung
term. However, to accomplish a complete description of the 3-
BD phenomenon, it is necessary to account for interference ef-
fects, or quantum entanglement, among the probability ampli-
tudes of the different routes inside the crystal. Therefore, we
must work with the wavefields and not only with the number of
photons scattered by each diffraction channel. For a Bragg re-
flected primary beam, a complete description is accomplished
by assigning wavefields to every Umweg channel and replacing
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the sum of their probabilities by the modulus square of the sum
of their wavefields, i.e.,

N�
n � 1

PA � n � � ����� N�
n � 1

DA � n � ����� 2 � 3DN � 2 �53 2
where DA � n � is the total wavefield diffracted by all n-bounce
channels ending on the beam A, for instance,

DA � 1 � � DA �
DA � 2 � � DBC � 2 � �
DA � 3 � � DAĀA � DBB̄A � 2 � � DAC̄C � 2 � � �6�7�8�

The oscillation directions of the wavefields are determined by
polarization factors, while their amplitudes are related to the
diffraction probabilities according to

K 3DA 3 2 � I0rAv2
A � K 3DBC � 2 �53 2 � I0rBrCv2

BC � �7�6�
where K converts wavefield square units to number of photons
per unit of time, and the dependence with the azimuthal angle,2

, is owing to rB and rC̄ probabilities, see Eq. (11). The polar-
ization factor of each individual channel, vA, vBC, ..., are cal-
culated as described in the Appendix A. With these definitions,
the intensity equation, Eq. (??), can be written in terms of the
Nth-order solution of the primary wavefield, DN � 2 � , as

IA �N � � 2 � � K 9 1 � � aA � rĀ � rC̄ �;:<3DN � 2 �53 2 � (14)

There are two basic differences between the intensity equa-
tion obtained here by consistency of probabilities, Eq. (14), and
those obtained by a pure series expansion as in Eq. (1). The
first, and most obvious difference, is the Aufhellung term mul-
tiplying the modulus square of the series expansion of the field,3DN � 2 �=3 2; and the second difference is the fact that the ampli-
tude of each term of the series expansion, i.e. of each diffraction
channel, does also depend explicitly of the diffraction probabil-
ities. Therefore, Eq. (14) is an outstanding tool for qualitative
understanding of the 3-BD process because, once the diffrac-
tion, absorption and exiting probabilities are estimated, the bal-
ance of energy and the relative relevance of the terms in the
series expansion are determined. To keep our focus in demon-
strating the necessity of the Aufhellung term for describing the
3-BD process, a detailed suggestion on how to estimated the
diffraction probabilities and the amplitudes of the fields for a
linearly polarized X-ray beam is left to Appendix A.

Since the dependence of the wavefields with the azimuthal
scan can be taken into account by a simple function, f � 2 � ,
where 3f � 2 �53 2 � 1 at the maximum of the 3-BD, the 3rd-order
solution of the primary wavefield, D3 � 2 � , can be written as a
5 > 3 matrix (5 vectors, 3 components each):

96?A@ j : �
BCCCCD

DA

DBCf � 2 � eiΨT

DAĀAei∆ E A
DBB̄Af � 2 � ei∆ E B
DAC̄Cf � 2 � ei∆ E C

FHGGGGI (15)

where ΨT �KJ B � J C � J A is the invariant phase triplet, ∆ J G �J G � J Ḡ, and J G is the phase of the structure factor of reflec-
tion G. The choice of a same f � 2 � function to all

2
-dependent

channels (or terms of the series expansion) as well as f � 2 � it-
self can be subject of further discussion, but it is out of scope
here since there are other equivalent formats of Eq. (15) already
available in the literature, see for example Eqs. (20), (21), and
(22) of Thorkildsen & Larsen (2002) or Eq. (7) of Stetsko et al.
(2004). f � 2 � stands for the resonant term taking into account
the dynamical phase shift of the multiple excited waves (see
also Shen et al., 2001; Weckert & Hümmer, 1997). Then, the
intensity of the primary beam is given by

IA � 3 � � 2 � � K � 9 1 � b 3 f � 2 �53 2 : 5�@ � LM� 1 N @ L 3�
j � 1

? @ j ?POL j

�
(16)

rC̄ � 2 � has been replaced by rC̄ 3f � 2 �53 2 in the Aufhellung term.
K � � K � 1 � aA � rĀ � and b � rC̄/ � 1 � aA � rĀ � stands for the
fraction of the primary intensity taken by the secondary beam.
The N @ L coefficients can be used to artificially tune the coher-
ence, or interference capability, of the wavefields in Eq. (15).
For a maximum coherence, N @ L � 1; otherwise N @Q@ � 1 and
0 ) N @ L � N L @ � 1.
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Figure 5
(a) Rocking curves of the 22̄6 GaSb primary reflection with the incidence
plane at the horizontal position, R -polarization ( S � 0), and at the vertical, T -
polarization, scattering upwards ( S �U# 90 V ) and downwards ( S � � 90 V ). (b)
Modulus square of the polarization factors (P.F.): vA and vAĀA (closed-black
circles), vBC and vBB̄C (open circles), and vAC̄C (gray circles) calculated as
described in Appendix A. The latter two curves are multiplied by two in the
given scale. cos W (gray line) is equal to -1 in the interval � 50 ! 8 VYX S X 0
(DA Z DBC � W ). These five polarization factor are either parallel or anti-
parallel to each other; it is a consequence of 2 [ A � 90 V (Bragg angle of the
primary reflection equal to 45 V ). For other values of 2 [ A, the polarization fac-
tors have, in general, different directions.

3. Experimental and simulated results

The most simple experiment to prove that Aufhellung, as con-
sidered in Eq. (16), is necessary for describing the 3-BD pro-
cess would be by eliminating from D3 � 2 � , Eq. (15), the contri-
butions of all

2
-dependent Umweg channels. Then, a symmet-

ric dip owing to Aufhellung should be observed in the
2

-scan.
In fact, the linear polarization of the synchrotron radiation can
be used to eliminate simultaneously the contributions from the
B+C and B+B̄+A channels. By setting the secondary reflection
forbidden by polarization (vB 
 0 \ DBC 
 DBB̄A 
 0), the
only

2
-dependent features in IA � 3 � � 2 � are provided by Aufhel-

lung, b ]� 0, besides the contribution from the A+Ā+C channel
(DAC̄C ]� 0).

This experiment was carried out at the Brazilian Synchrotron
Light Laboratory (LNLS), X-ray diffraction beamline (XRD1),
with the polarimeter-like diffractometer described elsewhere

(Morelhão, 2003). The rotation of the diffractometer’s inci-
dence plane around the incident beam direction is provided by
the ^ -axis. With ^ � 0 the incidence plane is at the horizontal
position ( _ -polarization), and it is at the vertical position ( ` -
polarization) scattering upwards or downwards for ^ � � 90 a
or ^ � � 90 a , respectively. The X-ray photon energy has been
set to 9539eV by a Si 111 double-crystal monochromator, the
horizontal beam divergence is limited by slits, and the sample
is a GaSb (001) crystal. The rocking curves of the 2̄26 GaSb
primary reflection at ^ � � 90 a , 0, and � 90 a positions of the
incidence plane are shown in Fig. 4(a), while the behavior of
the polarization factors for the chosen 3-BD as a function of ^
are shown in Fig. 4(b).

The experimental interference profiles (
2

-scans) of the
2̄26/2̄2̄6/040 three-beam diffraction (A/B/C reflections) are
shown in Fig. 5 as a function of the polarization direction of the
incident X-ray beam. The

2
-scans where Aufhellung is dom-

inant are marked by a dashed circle. Best-fitting curves are
also shown. They were adjusted to the experimental data using
the 2nd-order approximation, IA � 2 � � 2 � , derived from Eq. (16)
by setting N @ L � 0 for * �cbed 3, and N 12 � N 21 � N .f � 2 � � w/ 9 2 � 2 � 2 0 �f� iw : , w is the intrinsic width, i �Kg � 1,
and

2
0 � 150

�
5645 a since the [110] was taken as the refer-

ence direction for the
2

-rotation. The instrumental broadening
is taken into account by a gaussian convolution (FWHM=wG)
where the range of the numerical integral is 5wG. With ΨT � 0
(the theoretical values in the absence of anomalous scattering),
the other adjustable parameters have been optimized by a fit-
ting algorithm within the following ranges of allowed values:
R � g rBrC/rA � 9 0 � 5 : 1

�
5 : ; N � 9 0 � 4 : 0

�
8 : ; b � 9 0 : 1 : ; and

w � 9 0 � 0012 a : 0
�
0024 a : . There are several combination of these

parameters capable to reproduce the same best-fitting curves,
but in general, the instrumental width, wG, varies from about
0
�
003 a to 0

�
008 a as the incidence plane goes from the horizon-

tal to the vertical position.
The observed changes in the asymmetry of the profiles can be

understood by analyzing the behavior of the polarization fac-
tors, Fig. 4(b). Since the Bragg angle of the primary and sec-
ondary reflections are 45 a ( h � 1

�
2998Å), the signal of

cos i � DA j DBD/ 3DA 373DBD 3
abruptly change twice, at ^ � 0 � vA 
 0 � and ^ �� 50

�
8 a � vB 
 0 � where the A and B reflections are forbid-

den, respectively. For ^k$ 0
�
0 a or ^ � � 50

�
8 a , the five fields

contributing to D3 � 2 � , Eq. (15), are parallel, i.e. they have ` -
components only. In the ^ range where cos i � � 1, DBC and
DBB̄A are anti-parallel to the other fields, and therefore, the
asymmetry of the profiles are reversed.

To clearly demonstrate the Aufhellung effect, we have
searched for a set of diffraction probabilities capable to repro-
duce, at least qualitatively, all scans in the experimental dataset,
and not only the scan where this effect is dominant. Therefore,
for qualitative comparison purposes only, the set of

2
-scans

generated by the 3rd-order solution of the intensity equation,
Eq. (16), is shown in Fig. 6. They were calculated for the same
polarizations of those scans in Fig. 5. The diffraction probabil-
ities, 9 rA rB rĀ rC̄ rB̄ rC : � 9 0 � 31 0

�
49 0

�
025 0

�
455 0

�
092 0

�
758 : ,
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as well as the intrinsic width, w � 0
�
0016 a , coherence coeffi-

cients, N @ L � 0
�
6 (for *l]�mb � , and the invariant phase triplet,

ΨT � 30
�
0 a , were obtained by trial and error, based on visual

comparison with the dataset in Fig. 5. ∆ J A � ∆ J B � ∆ J C � 0
�
0 a

(theoretical values without anomalous scattering). The instru-
mental width is the unique parameter, besides the polarization
angle, that changes from one

2
-scan to the other, according to

the values extracted in the fitting procedure of the experimental
dataset above mentioned. Different values of the incident inten-
sity were used to generate the scans with ^ � 0 a (I0 � 228
Kcps) and with ^n$ 0 a (I0 � 441 Kcps). It was necessary
to match the peak intensity of the primary reflection, which is
different when scattering downwards and upwards as shown in
Fig. 4(a). Moreover, to achieve such agreement to all

2
-scans in

the experimental dataset (Fig. 5), the excitation function of the
A+C̄+C channel was replaced by � f O � 2 � .

Fig. 7 shows the experimental and simulated
2

-scans where
DBC 
 DBB̄A 
 0 ( ^ � � 52 a ) as well as where their values, in
modulus, are close to a maximum ( ^ � 56 a ). Besides the scans
already shown in Figs. 4 and 5, there are two other simulated
scans, both generated by Eq. (16) with exactly the same param-
eters described in the above paragraph, but without accounting
for Aufhellung, i.e. b � 0, and for ∆ J C � 80

�
0 a . The primary

intensities, base lines of the scans, were matched by displacing
the intensity scale of the experimental scans.

4. Discussions
Only on theoretical basis, it is possible to assure that an Aufhel-
lung term, such as 9 1 � b 3f � 2 �53 2 : in Eq. (16), is required for a
complete description of the 3-BD phenomenon by any theoret-
ical approach where the solution of the total diffracted wave-
field is written as series expansion. Otherwise, the Aufhellung
effect would depend on the relative phases of the terms in the se-
ries expansion. The result in Fig. 7(a) proves it experimentally.
Since DBC and DBB̄A were eliminated by the linear polarization
of the synchrotron radiation, the only possible way to generate
a dip-like feature in this

2
-scan is by assigning to ∆ J C a phase

value close to 90 a , as shown by the dashed curve in Fig. 7(a).
Actually, this phase value is close to zero. If anomalous dis-
persion is taken into account for X-ray photons of 9539eV,
∆ J C o 11 a ( f �Ga � � 2

�
172, f � �Ga � 0

�
572, f �Sb � 0

�
105, and

f � �Sb � 4
�
434). However, even if it was close to 90 a , interpre-

tation of Aufhellung as a phase dependent feature is conceptu-
ally wrong. For instance, without the Aufhellung term, b � 0,
the interference of DA and DAC̄C would produce an asymmet-
ric profile, such as the gray one in Fig. 7(a), which does not
account for the pull of energy owing to the excitement of the
secondary beam. – One might be wondering, what secondary
beam are the authors talking about? Is the secondary reflection
forbidden by polarization or not? – Although, the 2̄2̄6 reflection
is forbidden, or suppressed, at this polarization, the secondary
beam intensity is owing to photons exiting the crystal by the
A+C̄ Aufhellung channel, which has a higher exiting probabil-
ity than the A+C̄+C Umweg channel. Moreover, the

2
-scans in

Fig. 7(b) have shown that even when the B+C Umweg channel
provides a strong contribution, the Aufhellung effect can signif-
icantly change the asymmetry of the interference profiles.

Figure 6
Experimental (open circles) three-beam X-ray diffraction interference profiles,p

-scans, as a function of the polarization angle S , given aside of each scan. The
A (primary), B (secondary), and C (coupling) reflections are the 2̄26, 2̄2̄6, and
040 reflections of a GaSb (001) crystal, respectively. X-ray photon energy is
9539eV. The best-fitting curves (solid lines) were obtained by 2nd-order solu-
tion of the intensity equation, IA q 2 r � p  , after a gaussian convolution to account
for the instrumental broadening, as explained in the text ( s 3). The profiles where
Aufhellung is a dominant effect are marked by a dashed circle. They correspond
to polarizations around S � � 50 ! 8 V where DBC t DBB̄A t 0, see Fig. 4(b).

Note that the statements in the above paragraph are valid
independently on how the terms of the series expansion – the
wavefields in Eq. (15) for a 3rd-order solution – are calculated
or described as a function of the azimuthal and incidence angles.
As far as their maximum values, in modulus, occur at the max-
imum of the 3-BD excitement condition, the statements stand.
Replacing f � 2 � by any other function changes only how the
asymmetry of the interference profiles are affected by the phase
values; and by using non-unit coherence coefficients ( N @ L � 1
for *K]�Kb ), we are just smoothing the asymmetries of the pro-
files.
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Figure 7
Three-beam X-ray diffraction interference profiles,

p
-scans, generated by

the 3rd-order solution of the intensity equation, IA q 3 r � p  , for the same po-
larizations of the experimental scans in Fig. 5. The simulation parameters
are: 2 [ A � 2 [ B � 89 ! 997 V , 2 [ C � 50 ! 478 V , u rA rB rĀ rC̄ rB̄ rC vw�u 0 ! 31 0 ! 49 0 ! 025 0 ! 455 0 ! 092 0 ! 758 v (aA � 0 x b � 0 ! 466), w � 0 ! 0016 V ,y{z}| � 0 ! 6 (for ~���m� ), ΨT � 30 ! 0 V , ∆ � A � ∆ � B � ∆ � C � 0 ! 0 V ,
I0 � 228 Kcps and 441 Kcps for S X 0 V and S � 0 V , respectively. The
instrumental widths, wG, are those obtained by fitting the experimental scans.

Recently, Stetsko et al. (2004) pointed out that for primary re-
flections with Bragg angle different of 45 a , the diffracted wave-
field of each individual channel in Eq. (15) would have different
directions and behaviors as a function of the polarization direc-
tion. This is correct, as can be verified by the polarization fac-
tors provided in the Appendix A, Eqs. (22-26). However, this
fact emphasizes the importance of developing theoretical ap-
proaches for the 3-BD process that preserve the relative rele-
vance of the channels, i.e. of the terms of the series expansion.

According to consistency of probabilities, the amplitude of a
given channel does not depend only on the reflectivities of the
involved reflections and polarization factors. They also depend
on exiting probabilities as expressed, explicitly, by Eq. (19) in
the Appendix A. The reflectivities determine the relative values
of the diffraction probabilities, Eq. (18), and for dG � aG $ 0, the
sum of diffraction probabilities, sG � 1 � � dG � aG � , are smaller
than 1. Therefore, the amplitudes in Eq. (19) are, in modulus,
smaller than they would be in an infinity non-absorbing crystal.
The bottom line is that: diffraction geometry, absorption, and
crystal shapes affect the relevance of the terms in a series expan-

sion of the primary wavefield. Accounting for such parameters
would imply in lost of generality, i.e. of a general expression for
describing all 3-BD cases. This is the great advantage of the de-
scription presented here, based on consistency of probabilities.

Although we may not know yet how to estimate quantita-
tively the diffraction and exiting probabilities, any guess rep-
resents a real situation where the balance of energy among the
diffracted beams is obeyed, as well as the relevance of each term
of the series expansion. That is how was possible to reproduce
(Fig. 6) an experimental dataset (Fig. 5) without providing any
information about the sample. Even so, Aufhellung was taken
into account, as well as the contributions of the 3rd-order terms;
see for instance, the asymmetric dip-like profile of the experi-
mental scan in Fig. 7(a), whose asymmetry is a 3rd-order fea-
ture owing to the A+C̄+C channel.

Moreover, we have noticed that the set of diffraction proba-
bilities responsible for the simulated scans, Fig. 6, provides the
value of R � g rBrC/rA 
 1

�
1
�
According to Eq. (20), R $ 1

leads to 3 FB 3�$�3 FA 3 where the A and B reflections are the 2̄26
and 2̄2̄6 reflections, respectively. Sphero-symmetric charge dis-
tributions placed at the atomic sites of the zinc-blend structure
do not explain such inequality, even when anomalous dispersion
corrections are considered.

The inaccuracies on the simulation parameter values are sig-
nificant. They arrive mostly because the instrumental width is at
least twice the intrinsic width, wG $ 2w. It increases the range
of possible values capable to reproduce the same

2
-scan. Oth-

erwise, accurate R and ΨT values provide precious information
on chemical bounding charges (Stahn et al., 1999). A simple
crystal structure model can explain R o 1

�
1 and ΨT � 30 a .

In this model, 8 valence electrons (5 from Sb and 3 from Ga
atoms) give rise to four bounding-charges, 2e � each, placed
at the fractional positions x(1,1,1), x(-1,- 1,1), x(-1,1,-1), and
x(1,-1,-1). With the unit cell origin at Sb and x � 0

�
37/4, the

following structure factors and invariant phases are obtained
after anomalous dispersion corrections: 3 FA 3 � 3 FĀ 3 � 40

�
8,3 FB 3 � 3 FB̄ 3 � 47

�
2, 3 FC 3 � 157

�
8, 3 FC̄ 3 � 179

�
6, ΨT � 29

�
8 a ,

∆ J A � 18
�
1 a , ∆ J B � 63

�
0 a , and ∆ J C � 13

�
8 a . The same sG val-

ues used in the previous simulation, Fig. 6, provide R � 1
�
047

and a very close match to the set of diffraction probabilities, as
well as to the simulated scans.
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Figure 8
Experimental (open circles) three-beam X-ray diffraction profiles taken at po-
larizations where (a) DBC � DBB̄A � 0 ( S � � 52 V ) and (b) their modulus are
close to the maximum values ( S � 56 V ). The simulated

p
-scans generated by

the 3rd-order solution of the intensity equation, Eq. (16), stand for different situ-
ations: the same simulated scans in Fig. 6 with Aufhellung (black lines), without
Aufhellung, i.e. b � 0 (gray lines), and without Aufhellung and ∆ � C � 80 ! 0 V
(dashed lines).

5. Conclusions

It has been theoretically and experimentally demonstrated here
that, when the three-beam X-ray diffraction phenomenon is de-
scribed by approximated solutions in form of simple series ex-
pansions of the diffracted wavefields, mechanisms accounting
for the balance of energy among the simultaneously diffracted
beams are missing. The proposed theoretical approach succeeds
in providing one of such mechanisms. Moreover, with this ap-
proach, it is possible to analyze experimental results and extract
accurate information on the crystalline structure without the ne-
cessity of applying specific boundary conditions.

Appendix A.
Wavefield amplitudes

According to consistency of probabilities, the amplitude of
the wavefield diffracted by each individual channel, or term of

the series expansion of the total wavefield, depend on diffrac-
tion probabilities, rH, and polarization factors, vchannel . Up to
the 3rd-order solution of the primary wavefield, Eq. (15), the
amplitude values (with KD2

0 � I0) are given by

DA � g rAD0vA

DBC � g rBrCD0vBC

DAĀA � g rArĀrAD0vAĀA (17)

DBB̄A � g rBrB̄rAD0vBB̄A

DAC̄C � g rArC̄rCD0vAC̄C

�
In this appendix, the diffraction probabilities are related to

the modulus square of the structure factors, 3 FH 3 , and the po-
larization factors calculated from 2 � A, 2 � B, and 2 � C, the angles
between the diffracted beam directions.

A.1. Diffraction probabilities

The diffraction probabilites have been estimated by the fol-
lowing expressions assuming previous knowledge on the crystal
structure, i.e. on the 3 FH 3 values:

rA � s0 3 F̃A 3 2 � rB � s0 3 F̃B 3 2 � rĀ � sA 3 F̃Ā 3 2 �
rC̄ � sA 3 F̃C̄ 3 2 � rB̄ � sB 3 F̃B̄ 3 2 � and rC � sB 3 F̃C 3 2 � (18)

sG � 1 � � dG � aG � , dG and aG are the exiting and absorption
probabilities for X-ray photons in the beam G, and3 F̃A � B 3 2 � 3 FA �B 3 2/ ��3 FA 3 2 � 3 FB 3 2 � �3 F̃Ā � C̄ 3 2 � 3 FĀ � C̄ 3 2/ � 3 FĀ 3 2 � 3 FC̄ 3 2 � � and3 F̃B̄ � C 3 2 � 3 FB̄ � C 3 2/ � 3 FB̄ 3 2 � 3 FC 3 2 � �

In terms of the normalized structure factors and of sG, the five
amplitudes in Eq. (17) are written as

DA � g s0 3 F̃A 3 D0vA

DBC � g s0 sB 3 F̃B 363 F̃C 3D0vBC

DAĀA � s0 g sA 3 F̃A 373 F̃Ā 373 F̃A 3D0vAĀA (19)

DBB̄A � s0 g sB 3 F̃B 363 F̃B̄ 373 F̃A 3D0vBB̄A

DAC̄C � g s0 sA sB 3 F̃A 363 F̃C̄ 373 F̃C 3D0vAC̄C

�
In general, the interference profiles of the 3-BDs are very

much affected by two parameters: i) the amplitude ration (with-
out polarization factors), R, between the 1st and 2nd terms of
the series expansion, i.e. between the wavefields from channels
A and B+C, which depends on sB according to

R ��� rBrC

rA
� g sB

3 F̃B 363 F̃C 33 F̃A 3 ; (20)

and ii) the fraction of Aufhellung, b, given by

b � sA
3 F̃C̄ 3 2

1 � aA � sA 3 F̃Ā 3 2 � (21)

Note that sB and sA account for absorption and exinting prob-
abilities, and therefore, the effects of such probabities in the
interference profiles.
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A.2. Polarization factors

For a linearly polarized X-ray incident beam, whose polar-
ization direction is given by the unit vector v̂0, the polarization
factors are calculated as (Thorkildsen & Larsen, 2002; Stetsko
et al., 2004)

vA � k̂A > � v̂0 > k̂A � (22)

vB � k̂B > � v̂0 > k̂B �
vBC � k̂A > � vB > k̂A � (23)

vAĀ � k̂0 > � vA > k̂0 �
vAĀA � k̂A > � vAĀ > k̂A � (24)

vBB̄ � k̂0 > � vB > k̂0 �
vBB̄A � k̂A > � vBB̄ > k̂A � (25)

vAC̄ � k̂B > � vA > k̂B �
vAC̄C � k̂A > � vAC̄ > k̂A � (26)

where k̂G is an unit vector along the propagation direction
of the beam G. For sake of simplicity, these directions are
calculated here from the 2 � A, 2 � B, and 2 � C values, accord-
ing to: k̂0 � 9 0 � 0 � 1 : , k̂A � 9 sin 2 � A � 0 � cos 2 � A : , and
k̂B � 9 x � y � cos 2 � B : where

x � cos 2 � B � cos 2 � A cos 2 � B

sin 2 � A

and

y �,� - sin2 2 � B � x2
�

In this reference system, the polarization direction of the inci-
dent radiation is written as v̂0 � 9H� cos ^ � sin ^ � 0 : . The minus
signal is owing to the rotation sense of the diffractometer’s ^ -
axis.

This work was supported by the Brazilian founding agencies
FAPESP, grant number 02/10387-5, and CNPq, proc. number
301617/95-3.
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