Awufhellung in series expansion solutions of three-beam X-ray diffractions

Sérgio L. Morelhdo,''* Luis H. Avanci,!

and Stefan Kycia?

! Instituto de Fisica, Universidade de Sdo Paulo, CP 66318, 05815-970 SdoPaulo, SP, Brazil
2 Laboratdério Nacional de Luz Sincrotron/LNLS, CP 6192, 18084-971 Campinas, SP, Brazil
(Dated: December 5, 2004)

Physical X-ray phase measurements are possible via three-beam diffraction experiments. General-
ized and simple theoretical approaches have become a necessity for accessing this piece of information
by means of practical and systematic procedures. Consistency of probabilities for the X-ray photons
entering and leaving the crystal are exploited here to derive theoretical approaches accounting for
Aufhellung, an energy balance effect among the simultaneously diffracted beams.
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I. INTRODUCTION

In the n-beam X-ray diffraction phenomenon, or mul-
tiwave diffraction, the reduction in the intensity of a two-
beam diffraction owing to the excitement of other beams
is known as Aufhellung.l>2 It is directly related to the bal-
ance of energy among simultaneously diffracted beams.

For decades, the multiwave diffraction in single crys-
tals has been extensively studied since it allows physical
measurements of reflection phases, more precisely the in-
variant phase triplets.>~>!® The dynamical theory — the
solution for the propagation of X-rays in crystals de-
duced from Maxwell’s equations — describes all elemen-
tary concepts of crystal optics for X-rays, and also the
n-beam diffraction. It provides the propagation modes
of the electromagnetic fields in a perfect periodic in-
finite medium. Boundary conditions are required for
determining the amplitudes of the diffracted waves in
a finite crystal, which account for the energy balance
among the diffracted beams. However, great efforts have
also been dedicated in developing other theoretical ap-
proaches to embrace relevant aspects of the diffraction
physics, such as crystalline imperfections, and to facili-
tate feasible analysis of experimental results.

The available approaches are limited solutions, mostly
for three-beam diffraction cases, based on second-
order®1%14 and third-order approximations derived ei-
ther from Takagi-Taupin treatment'®7 or from the fun-
damental equation of dynamical diffraction theory;'®
well-organized reviews on succeeding developments in
this research field can be found in recent articles.'?:?
In most approaches, the diffracted intensities are given
by

(1)
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where the amplitude of the electric displacement field is
written as a series expansion, and each term of the expan-
sion, Dy, g, has its maximum contribution, in modulus,
at the maximum of the multi-beam excitement condition.
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FIG. 1: X-ray scattering in a small crystal undergoing two-
beam diffraction. (a) Measurable transmitted Io, and re-
flected Ia, intensities; (b) forward-transmitted wave Do; (c)
first-order reflected wave Dj s, owing to the excitament of
reflection A; and (d) second-order wave D(Qf\o), generated by
the rescattering of D; a in the A reflection.
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A. Detailed description of the problem

The motivation of this work is the fact that it is not
trivial to take Aufhellung into account by series expan-
sion solutions of the fields as defined in Eq. (1); the inclu-
sion of higher-order terms do not account for Aufhellung
as suggested by several authors'®. The reason is that
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occurs exclusively due to interference effects. Each addi-
tional term of the series expansion can reduce or enhance
the diffracted intensity depending on its relative phase
to the other terms. Individually, or in the absence of in-
terference effects, each term represents some amount of
energy contributing to the diffracted intensity, which is
the opposite effect of Aufhellung.

The deficiency of series expansion form of solution
to account for Aufhellung can be better demonstrated
by means of an example. Let assume the small non-
absorbing crystal in Fig. 1, where third-order terms as



well as higher order ones are negligible, i.e. Dp>3q ~ 0
for G = 0 or A. Then,

Ip=— |D +D’<A> (2a)
and
C 2
I, = — |D] 2b
A =5 Dl (2b)

are the intensities under two-beam diffraction, as in
Fig. 1(a). Dy is the forward-transmitted wave Fig. 1(b),
and D'l, A is the first-order reflected wave owing to the
excitament of reflection A, Fig. 1(c). A second-order
wave DY, towards the forward-transmitted one is gener-
ated by the propagation of Dll, A inside the crystal under
diffraction condition for the A reflection, Fig. 1(d).
When another reflection is simultaneously excited, for
instance reflection B, the diffracted intensities become

Dy + Dy  + D} A[* =

There are two major difficults in series expansion so-
lutions: ) the convergence properties of the series un-
der multi-beam diffraction regime, which is the time-
independent solution, or the solution for the crystal in a
fixed position; and i) the time-dependent solution capa-
ble to describe the selective excitament of the beams until
the multi-beam configuration is achieved. It can be sum-
marized in the above example, in how to go from Egs. (2)
to Egs. (3) without violating the equality in Eq. (4). In
more specific words, it is necessary to describe not only
how the extra terms in Egs. (3) are excited, but also how
the terms already excited in Eqgs. (2) are affected by the
excitement of another beam, which is Ig in this exam-
ple. For a qualitative description, one may assume that
Do = D, D) = DYy, and Dy 4 = D} , and that the
extra terms in Eqgs. (3) are switched-on as the crystal ro-
tates to excite Ig. However, in this description the total
diffracted intensity is not preserved, and that ends any
possibility to correctly account for Aufhellung.

Nevertheless, such qualitative description provides
good results for particular cases where D5 and Dy}
have destructive interferences with the other terms of IO
and I, in Egs. (3a) and (3b), respectively; and these de-
structive interferences account for some amount of the
intensity transfered to Ig. Although some phase rela-
tionships may exist among the diffracted waves, they
vary from one crystal to another since the structure fac-
tor phases are intrinsically related to the internal three-
dimensional structure of the crystals. Therefore, for a
general solution, the balance of energy among simultane-

Do + DY} + D53 + ‘Dl A +DP)

Ip=— |D0 + DYy + Dy (3a)
Ia = ‘D1 A+ D(B) ) (3b)
and
2
Ip = \Dl 5 + DY) (3¢)

(A,B) superscripts are used on the second-order waves
to identify the first-order ones originating them.

Since the incident beam is constant in time, the to-
tal intensity of the diffracted waves under two-beam and
three-beam diffraction conditions are equal, i.e. I+I) =
Iop+Ia +Ipor

g Dis+ pyy[ )

ously diffracted beams should not rely on phase relation-
ships among terms of the series expansions.

To account, for Aufhellung, it is proposed a treatment of
the multi-beam diffraction phenomenon based on preser-
vation of classical probabilities for X-ray photons enter-
ing and leaving the crystal. Emphasis is to the balance of
energy, which appears naturally in this treatment. It al-
lows convergent solutions even in cases where Aufhellung
can not be neglected, as experimentally demonstrated for
three-beam diffraction cases. Interference of probability
amplitudes for photons is included to take phase sen-
sitivity into account, and to provide mechanisms to cor-
rectly estimate the contributions of higher order terms in
the solution of the diffracted intensities. Moreover, the
demonstrative experimental dataset also carries some in-
formation on chemical bounding-charges, as shortly dis-
cussed.

II. GENERAL SOLUTION

Classical and quantum concepts of probability have
been recently applied to describe the two-beam diffrac-
tion in reflection geometry.2 By following the classical
trajectories of X-ray photons inside a periodic lattice and
preserving their probabilities for reflection, transmission
and absorption at each lattice plane, classical scattering
outcomes are obtained. Diffraction phenomena in crys-
tals were reproduced after assigning quantum probability
amplitudes?! to every classical outcome.



Under multi-beam diffraction, the classical outcomes
are obtained by visualizing the photons as classical parti-
cles; in this context, X-ray beams “...are streams of glob-
ules, like bullets from a machine gun”. It allows the def-
inition of pg u(n) as the X-ray photon diffraction proba-
bility from beam H to beam G after n diffraction events
(bounces) inside the crystal. The population Pg(n) of
n-bounced photons in the beam G is then calculated as

Pa(n+1)= Y peu(n)Pu(n). (5)

H#£G

Po(0) = Ny stands for the incident number of photons
per unit of time, and the time-dependence of the pg u(n)
probabilities are determined by the crystal rotation, i.e.
on how the crystal position varies in time until the -beam
configuration is achieved.

Assuming a slow time variation to assure that at any
time instant the populations are given by Eq. (5), their
behaviors as a function of i can be infered by the sum of
diffraction probabilites,

sa(n) = ) pra(n) . (6)

H#£G

These values are interconnected by consistency of prob-
abilities to exiting probabilites defined as

da(n) =1-ag(n) —sa(n) (7)

where ag(n) is the probability of the photons in the beam
G to be absorbed after n bounces. Since dg(n) is the frac-
tion of n-bounced photons that will effectively leave the
crystal via beam G, the diffracted intensities (in number
of photons per unit of time) outside the crystal are given
by

N
I = Y da(n)Pa(n) . (8)

For Ng = 1, dg(n)Pg(n) corresponds to the total proba-
bility of the incident photon to interact and to leave the
crystal via one of the n-bounce channels ending on beam
G. — each channel is a different sequence of reflections
inside the crystal. — It garantees the balance of energy
among the diffracted beams since
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and hence, the converge of the series expansion in Eq. (8).

However, X-ray photons are quantum particles and,
consequently, the diffracted intensities also depend on in-
terference effects among the probability amplitudes of the

different diffraction channels. To explicitaly shown this
dependence it is necessary to replace the sum of proba-
bilities by the square modulus of the sum of probability
amplitudes, which are related to the amplitudes of the
electric displacement fields. It leads to
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I(;[N] =K (10)

where each term stands for the total diffraction probabil-
ity amplitude of all n-bounce channels ending on beam
G since

K|D,g|* = dg(n)Pa(n). (11)

K converts wavefield square units to number of photons
per unit of time diffracted within a given solid angle.

The physical meaning of dg(n) is to reduce, according
to Eq. (7), the probability amplitude of diffraction to-
wards beam G when other beams are excited, i.e. when
the photons on beam G, inside the crystal, have a non
null probability of leaving the crystal via other beams.
Therefore, the series expansion terms of this solution do
not necessarily have their maximum amplitude, in mod-
ulus, at the maximum of the multi-beam condition as
found in previous approaches, e.g. in Eq. (1).

The classical treatment of the photon populations,
Egs. (5) through (8), can provide only the square modulii
of the amplitudes in Eq. (10). It has still to be improved
to account for the phases of the diffracted waves, as well
as for the time-dependence of the pg u(n) probabilities.

Limited to three-beam diffraction cases (3BD), the
phases of the diffracted waves up to the third-order ap-
proximation are already available in the literature.'618
For this reason, the present developtments and discus-
sions will be henceforth limited to 3BD cases.

III. THREE-BEAM X-RAY DIFFRACTION

A general 3BD configuration is schematically illus-
trated in Fig. 2(a). For sake of simplicity, the pgu
diffraction probabilities are rewritten as rx where X (=
A, B, C, A, B, or C) indicates the Bragg reflection trans-
fering energy from beam H to beam G. Using these prob-
abilities in Eq. (5), the photon populations on the three
diffracted beams G = 0, A, and B, are

Po(n+1) = rzPa(n) +rgPs(n)
Pa(n+1) = raPo(n) +rcPs(n

) (12)

PB(TL + 1) = T‘BP()(N) + T'CPA(’I’L) .
The classical trajectories of the photons inside the crys-
tal are represented at the diagram in Fig. 2(b); by follow-
ing its loops or exiting at the bottom of each column all
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FIG. 2: X-ray three-beam diffraction in crystals: (a) planar
scheme of the involved A, B, C, A, B, and C reflections and ko,
ka, and kg wavevectors; (b) diagram of probabilities where
each column represents the diffraction, rx (boxes), exiting, dg
(circles), and absorption, ag, probabilities for X-ray photons
in the beam G (= 0, A, and B). The sum of these proba-
bilities at each column must be equal to 1. For instance, in
the incident beam column (first column at left), a forward-
transmited beam of non-diffracted photons occurs only when
do =1—ap—ra—rs > 0. All possible diffraction chan-
nels can be identified by following the loops of this diagrama,
but in general the rx, da, and ag probabilities are dynamical
variables changing at each loop.

possible diffraction channels are determined. At each col-
umn of the diagram, diffraction, exiting, and absorption
probabilities are preserved. For instance, the incident
photons (first column at left) have the ry and rg proba-
bilities of diffraction toward beams A and B, respectively.
If ro +rg = 1 all incident photons will be diffracted to-
ward one of these beams, otherwise, dg+ag = 1—ra —7r8
provides the probability of the photons to leave the crys-
tal via the incident beam direction plus their probabil-
ity of absorption. More insights on the intrinsic corre-
lation among diffraction and exiting probabilities can be
achieved by discussing a few examples.

A. Diffraction geometry and exiting probabilities

In Laue-Laue diffraction geometry there are three
diffracted-"transmitted’ beams, as illustrated in the in-
set of Fig. 3(a). A non-absorbing semi-infinity crystal
in this geometry is represented by sg = 1, and hence
ag = dg = 0. Sincerpa + 18 =1, rz + 15 = 1,
and rg + r¢ = 1 the photons are bouncing endlessly
from one beam to another, and the photon populations
tend to constant non-null values, as shown in Fig. 3(a).
No diffracted beams are measured outside the crystal,
Ig = 0, since the photons will never reach the exiting
surface at infinity. On the other hand, for a finite crys-
tal slab there would be a minimum number of bounces,
ny,, necessary for the photons to reach the exiting sur-
face. For n < ni the exiting probabilities are zero, i.e.
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FIG. 3: Populations of n-bounced photons, P(n) [Eq. (12)], in
the diffracted beams inside a semi-infinity crystal, calculated
for RA = Rz, Rs = Rg = 0.16RA, and Rc = Rg = 0.36RA
where Rx is the intensity reflectivity of reflection X under -
BD condition. (a) Laue-Laue case (sg = 1): [ra B I3 Ig I'y
rc] = [0.862 0.138 0.735 0.265 0.308 0.692]; (b) Bragg-Laue
case (sa = 0.8): [0.862 0.138 0.588 0.212 0.308 0.692]; and
(c) Bragg two-beam case (sa = 0.8, Rs = Rg = 0): [1.0
0.0 0.8 0.0 0.0 0.0]. The rx probabilities were obtained as
ra,B = SoRa,B/(RA + RB), TAg = SAR;\,@/(RA + Rg), and
5,0 = sBRg,c/(Rs + Ro).

dg =~ 0, and the behavior of the populations are very
similar to that shown in Fig. 3(a); but, for n > ny, the
populations vanish and diffracted beams are measurables
as Ig =~ Pg(ny) since dg(np) ~ 1 in Eq. (8).

A different situation occurs when absorption or exiting
probabilities are not null, and hence sq¢ < 1. In this
case, all populations decrease as a function of n, as for
instance depicted in Fig. 3(b) where the only difference
with respect to Fig. 3(a) is that spA = 0.8, or da +aa =
0.2. If dpo = 0 the decrease of the populations is owing
to absorption only, and the diffracted intensities are still
zero. However, for 0 < dp < 0.2 some photons on beam
A can reach an exiting surface and then I > 0. In a
semi-infinite crystal (of infinity thickness), it means that
the beam A must be a Bragg-reflected beam; a Bragg-
Laue diffraction geometry as illustrated in the inset of
Fig. 3(b). A Bragg-Bragg diffraction geometry would



require d4 > 0 and dg > 0.

Away from the 3BD condition, when only reflection A
is excitated, there is a total alternation in of the popu-
lation numbers from one beam to the other, as observed
in Fig. 3(c). In this particular example, all photons in
the beam 0 are bounced towards beam A, and 80% of
the photons in beam A are bounced back to beam 0.
The general behavior is that all photons in Pp and Py
have suffered, respectively, odd (n = 1,3,-) and even
(n =0,2,-) number of bounces.

It is very convenient to take exiting and diffraction
probabilities as constant values instead of functions of
n. These values are dynamical variables changing at
each bounce owing either to the relative positioning of
the exiting surfaces and polarization factors. In princi-
ple, it is possible to calculate the diffraction probabili-
ties per length unit and to compute the polarization fac-
tors for each sequence of reflections. However, before
upgrading the proposed approach to more realistic cases
and to include interference effects according to Eq. (10),
it is necessary to demonstrated that Eq. (8) is a time-
dependent solution capable to describe the excitament
of beams without violating the equality in Eq. (9), and
hence capable to account for Aufhellung.

B. Time-dependent solutions

A time-dependent solution requires the preservation of
the sum of probabilities in Eq. (7) as one or more diffrac-
tion probabilities change in time owing to the crystal’s
rotation. The first effect to be analysed is the splitting of
energy between two reflections simultaneously diffracting
a given beam, as for instance A and B, A and C, or B
and C reﬂectlons in Fig. 2(a).The analy51s is carried out
for the A and B reflections, and extended by analogy to
the other two pairs of reflections.

For this demonstration, let assume a very small non-
absorbing crystal where Rx gives the fraction of reflected
photons by each individual reflection. When only reflec-
tion A is excited, the diffracted intensities according to
Eq. (8) are

Io[o] = IO = doPo(O) = (1 - T’A)N(]

and
Iap =Ia =daPa(1) =raNg

where dg =1 —ra, 7A = Ra, and da = 1.

The problem in describing the excitement of reflection
B, when A is already excited, is that dg +r4 + g > 1
since dg + ra = 1. It implies that the previous exiting
and diffraction probabilities, dg and 7, must decrease
as reflection B is switched-on. But, by how much should
each one of these probabilities decrease? It seems com-
plicated because reflections A and B are simultaneous
events; otherwise, the diffracted intensities could be cal-
culated as shown in Fig. 4. If the diffraction probabilities
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FIG. 4: Simultaneousness of diffraction events and their ef-
fects on the diffracted intensities. (a) Reflection A occurs
before reflection B: Io = RaANg, I = Re(1 — Ra)No, and
Io = (1 — RB)(1 — Ra)No. (b) Reflection B occurs before
reflection A: Ig = ReNo, Ia = Ra(l — Rs)Np, and Ip =
(1 — Ra)(1 — RB)Np. For time coincidental reflections, the
outcome is the average of (a) and (b): Ia = Ra(1—0.5Rs)Ng
and Is = Re(1 — 0.5RA)No.

are taken from the average values between the two hypo-
thetical situations in Figs. 4(a) and 4(b), we have

ra = Ra(1 - Rg), (13a)
r8 = Re(1 — 1 Ra), (13b)

and
So=7A+7m8 =Ra+ Rp — RARgp . (13c)

These equations have simmetry with respect to the ex-
citament of one reflection, B or A, when the other, A or
B, is already excited. Therefore, the decrease in 74, or
rg, owing to the excitament of reflection B, or A, is given
by Eq. (13a), or Eq. (13b), respectively. The decrease in

= 1— g is given by Eq. (13c). When absorption is
taken into account, dg = 1 — ag — sp and the maximum
value of sg is limited in the range from 0 to 1-ao.

In large crystals the above solution fails. For instance,
a non-divergent incident beam undergoes total reflection
for both reﬂection i.e. Ro ~ Rg ~ 1, and therefore
rA > rg ~ 5, which is not truth. The values of rao and
rg should depend on the ratio between the square modulii
of the structure factors. To extend the energy splitting
solution in Egs. (13) to crystal of medium size, where the
series expansion of the fields only require a few terms,
the crystal’s dimension £g, along a given beam direction
is divided into m identical layers of thickness A/, with
known reflectivities Rx, and absorption probabilities ag.
The total diffraction probabilities are then obtained as
the sum over m. For the beam 0, it provides

2]-

In the limit of very thin layers Rx < 1, the products of
reflectivities such as RAoRp can be disregarded, so that
S0~ Ra +Rp and dy = (1 — 59 — ap)™ =~ exp[—m(so +
ao)]-

The differences between Egs. (13) and (14) become
more significant as m — oo since for m = 1 their results

1—do [RA(I—lRB)] (14)

so+ag | RB(1—5Ra)



are identicals. For an infinity non-absorbing crystal along
the indident beam, i.e. £y = ccand ap =0,ra8 = RaB
where ﬁA,B = Ra,B/s0- It provides different results for
ra and rg since Ry is the kinematical reflectivity of very
thin layers, proportional to the structure factor square
modulus. When absorption is allowed, dy — 0 indepen-
dently of the A and B reflections, and ag = ag/(so+ao) is
the fraction of absorbed photons so that 74 +rg+a¢ = 1.

Linear diffraction and absorption coefficients, corre-
sponding to diffraction and absorption probabilities per
unit length along each beam direction, can be defined as

aG sG
=% and = 2¢ 1
p=7p and pe =4 (15)
where p is the linear absorption coefficient of the mate-
rial. It allows the diffraction probabilities in Eq. (14), as

well as the other ones, to be written as

1—dg [ﬁx] (16)

-
rY 1+ p/pe [ Ry

X and Y stands for the pair of reflections simultaneously
diffracting the beam G, and

dg = e—(IH-uG)ZG (17)

is the effective exiting probability through beam G.

In practice, knowledge on p and dg(n) values are re-
quired for a description of the diffraction process where
the condition imposed by Eq. (9) is always satisfied as
a function of the crystal rotation. Since AZ can be as
small as the lattice plane distances, Rx can be taken by
the photon reflection probability?® when crossing a single
lattice plane. It is a very small number, of the order of
102 to 10~7 in crystals such as silicon and germanium.
The contribution of reflection X to the linear diffraction
coefficient, g = pz + py in Eq. (15), is given by

2
Rx . 1 (7'6)‘|C||FX|d) (18)

e =Ae=a~ a\ V.sing

where 6 and d are the Bragg angle and lattice plane dis-
tance of the reflection X, respectively. V is the unit cell
volume, 7, = 2.818 x 10 %A the classical electron radius,
and A is the X-ray wavelength. For linearly polarized
X-rays, the polarization factor

|C| = |kn x (bn,c x kn)|? (19)

depends on polarizatin direction 9, g, of the photons on
beam G after n bounces, and on the direction of the
diffracted beam H given by kg = X + kg; X is the
diffraction vector of reflection X.

Since elastic scatterings are the only contribution to
reflection probabilities??, the structure factors are calcu-
lated as

0.5
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FIG. 5: Intensity variation in two-beam diffraction cases, Io
and Ia, owing to the excitament of the secondary reflection B
by the ¢ rotation (azimuthal scan) of the crystal around the
diffraction vector of the primary reflection A, Eq. (22). The
intensities are calculated by Eq. (8) for the following cases:
(a) Bragg-Laue case with the parameter vector p = [|Fa| |FB|
|Fc| do da ds]=[2 4 6 0.1 0.9 0.1]; (b) Bragg-Bragg case: p
=1[4400.050.8 0.7] in the same scale of (a); and (c) p = [4
06 0.2 0.5 0.8]. (d) Photon populations as a function of the
number of bounces n for the 3BD case in (c). The p values
are used in §II1.B. to calculate the diffraction probabilities rx,
at the maximum of the 3BD, but for sake of simplicity in this
demonstration pu, = k|Fx|? in Eq. (18) where k < 1. Since
p=0,Io+Ia+Ig=No=1

Fx = Z(f + faexp(2miX - 1,) = |Fx|e®*, (20)

a

which implies that |Fx| = |Fx| and dx + d5x = 0. a runs
over all atoms in the unit cell. f and f' stand for the
atomic scattering factor and its correction for atomic res-
onances, respectively. The linear absorption coefficient
of the material is determined by the f” correction of f,
which provides

27
p= r E fi! (21)
where T = r A2 /7 V.

C. Aufhellung

Occurrence of Aufhellung as a direct consequence of
energy balance mechanisms is demonstrated for a few
hypothetical cases in Fig. (5). The dg(n) are taken by
constant values as a function of n. It can be a good
approximation when the population of photons become
negligible just after a few bounces, e.g. Fig. 5(d).

Azimuthal rotation of the crystal around the diffrac-
tion vector of a given reflection, for instance reflection A,



is a systematic procedure to achieve the 3BD configura-
tion in Fig. 2(a). The effects of the ¢ rotation on the
diffracted intensities are taken into account by replacing

Ry e — Ry a(¢) = Ry o L(A9) (22)

in Egs. (16) and (18). L(A¢) is a lorentzian function of
unit weight, L(A¢ =0) = 1. A¢ = ¢ — ¢y stands for the
deviation in the rotation angle ¢, from the 3BD condition
at (,250.

As the crystal rotates, the intensities Iy and In of
the two-beam cases are balanced with the third beam
intensity Ig. How the intensities change depends on the
relative strengh of the involved reflections, as well as on
the exiting probabilities dg. But, in all cases and at any
instant,

Ip+Ia+I=Ng

since p = 0 for the cases in Fig. (5). Intensity reduc-
tion, named Aufhellung,' on the primary beam A can be
observed in Figs. 5(b) and 5(c), while intensity enhance-
ment, Umweganregung,?? is observed in Fig. 5(a).

D. Amplitude and interference of diffracted fields

In the third-order solution of the primary beam inten-
sity Ia[s), Eq. (10), there are 5 channels contributing to
the diffracted fields. They can be identified by following
the loops in Fig. 2(b):

—Channel A
KDy al* =da(1)Pa(1) = dara = |Daf*  (23a)
—Channel BC
K|D2,a|* = da(2)Pg(2) = darars = |Dpc[*; (23b)
—Channels AAA, BBA, and ACC
K|D3 al* = da(3)Pg(3)
=da(rarzra +rBrgra +rargre)  (23c)

= |Daaal> +|Dppal® + |Dacc|? .

The classical diffraction probability of each channel pro-
vides the square modulus of its probability amplitude.

Vectorial amplitudes and phases of the diffracted fields
can be written as a 5 x 3 matrix (5 vectors, 3 components
each)

|Da| 04

|DBC| ez’(Q-i-\Il) 'ﬁBC

[Daaa| Daaa (24)
|Dppal 6’:9 UBBA

[Dacc|e® bacc

[Daj ] =

where ¥ = g +Jc—3d 4 is the invariant phase triplet, and
Vehannel 18 the oscilation direction of each diffracted field

determined by the polarization factors in Appendix A.
Q = Q(¢) is the dynamical phase shift of the secondary
waves.»12 If the resonant term?? of the secondary reflec-
tion B is given by

26) = 35— g = TOKD, (29)

¢_¢0) — iws

L(A¢) = |£(¢)|? in Eq. (22). ws = +w or —w for ‘out-in’
and ‘“n-out’ position, respectively; w is the FWHM of
£(@)2.

This chosen £(¢) function is similar to other functions
already available in the literature,'®!® and that have also
been used to represent the ressonant term in third-order
solutions of the primary field. Our preference by the
specific function given in Eq. (25) resides on its simplicity
and adjustable width.

The minimum value of w, which is w5, corresponds
to intrinsic width of the reflection curve (in reflection ge-
ometry), also known as the Darwin width. The rotation
of the crystal around the ¢-axis (parallel to the diffraction
vector A), instead of around an axis perpendicular to the
incidence plane of reflection B, causes that, in general,
W > Wpyin. Moreover, the intrinsic width also depends on
polarization factors3%-3! and, as recently demonstrated,?°
can be calculated as a function of the photon reflection
probability, Rx in Eq. (18), which provides

Wmin = %\/ RB tan HB- (26)

The angular dependence of the diffracted fields in
Egs. (23) only accounts for the azimuthal rotation of the
crystal. It implies that, according to the field definition in
Egs. (23), the primary intensity Iz[3(¢) corresponds to
the integrated photon counting rate in the rocking curve
of the primary reflection.

5 3
Iafs)(0) = Z Eap DajDEj (27)
1

a,f=1 Jj=

where the £, coefficients can be used to artificially tune
the coherence, or interference capability of the fields
given in Eq. (24). For maximum coherence, &,3 = 1;
otherwise {no =1 and 0 < €y = €pa < 1.

IV. EXPERIMENTAL AND SIMULATED
RESULTS

The most simple experiment to prove that Aufhellung,
as considered in Eq. (8), is necessary for describing the 3-
BD process would be by eliminating from D3(¢), Eq. (7),
the contributions of all ¢-dependent Umweg channels.
Then, a symmetric dip owing to Aufhellung should be
observed in the ¢-scan. In fact, the linear polarization of



the synchrotron radiation can be used to eliminate simul-
taneously the contributions from the B4+C and B+B+A
channels. By setting the secondary reflection forbidden
by polarization (v & 0 = Dpc = Dgga =~ 0), the only
¢-dependent features in Ia[3)(¢) are provided by Aufhel-
lung, b # 0, besides the contribution from the A+A+C
channel (Djga # 0).

APPENDIX A
1. Polarization factors

For a linearly polarized X-ray incident beam, whose
polarization direction is given by the unit vector 9g, the
polarization factors are calculated as'®:!®

va =k x f;oxI;:A) szlngx(ﬁoxI%B)

’UBCZkAX ’UBXk:A) ’UAAZkOX ’UAXkO)

(
VBB = I;:O X (’UB X ]230)

VAc = IAcB X (UA X ]2:]3)

(

(

vaaa = ka x (vaa x ka)

vppa = ka x (vBp x ka)
(

vacce = ka X (vac x ka).

IQ:G = Mkg is the unit vector along the propagation di-
rection of the beam G. In Eq. (24), all 9 = v/|v|.

Knowledge on the values of the Bragg angle 6x, of
reflection X = A, B, and C, provides

ko =10, 0, 1]

I;A = [Sin 264, 0, cos 20A]

kg = [z, y, cos20B]
where

cos20p — cos 20 4 cos 20
xr =

sin 26 4

and

y = +1/sin? 20p — 22.

In the used system of reference, the polarization direc-
tion of the incident radiation is written as

g = [—cosx, siny, 0].

The minus signal is owing to the rotation sense of the
diffractometer’s x-axis.
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