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Even after several decades of systematic usage of X-ray diffraction as one of the

major analytical tool for epitaxic layers, the vision of the reciprocal space of

these materials is still a simple superposition of two reciprocal lattices: one from

the substrate and the other from the layer. In this work, the general theory

accounting for hybrid reflections in the reciprocal space of layer/substrate

systems is presented. It allows insight into the non-trivial geometry of such

reciprocal space as well as into many of its interesting properties. Such

properties can be further exploited even on conventional-source X-ray

diffractometers, leading to alternative, very detailed and comprehensive

analyses of such materials.

1. Introduction

The capability of growing thin layers of single crystals onto

one face of another single crystal has made possible many

fundamental achievements in semiconductor technology.

Epitaxic growth is today one of the most important and basic

processes used in manufacturing nanostructured devices.

Multilayered materials, such as superlattices and quantum

wells, or even quantum wires and dots, require epitaxy at some

stage of their preparation procedures. X-ray diffraction has

been the primary tool for structural analysis of epitaxic layers,

with the associated techniques and machinery following

closely the needs of the semiconductor industry.

A quarter of a century ago, when using a divergent X-ray

source and photographic films to record the layer/substrate

diffraction lines [the simplest possible setup (Chang, 1980) to

measure lattice mismatch of epilayers], Isherwood et al. (1981)

reported the observation of extra features, a kind of short line,

appearing all over the recorded images. Such features were

sequences of consecutive Bragg reflections in both single-

crystal lattices, and were named hybrid reflections. Later, the

phenomenon was quantitatively described and methods to

exploit its properties were suggested (Morelhão & Cardoso,

1991, 1993a,b). However, to probe the excitement conditions

of hybrid reflections precisely, collimated X-ray beam setups

would be necessary, such as those commonly found in most

synchrotron facilities where the beam can be highly collimated

in two orthogonal directions (Morelhão et al., 1991, 1998, 2002,

2003). Such requirements have created a huge barrier for the

systematic usage of this peculiar phenomenon in the tech-

nology of semiconductor devices.

Even after several decades of using X-ray diffraction as one

of the major analytical tools for epitaxic layers, the vision of

the reciprocal space of these materials is still a simple super-

position of two reciprocal lattices: one from the epilayer and

the other from the substrate. Diffraction conditions generating

any other extra feature have been avoided since they could

not be explained within this simplistic vision of the reciprocal

space. The incident-beam optics available for conventional

X-ray sources have, in the past, seemed inappropriate

(considering the requirement for a highly collimated beam in

two orthogonal directions) to investigate azimuthal-depen-

dent features; consequently, the analysis of epilayers by

standard X-ray diffraction techniques would be compromised

when hybrid reflections are excited. This work is an attempt to

change this scenario. Introducing a reciprocal-space descrip-

tion of hybrid reflections opens the possibility of exploiting in

detail the properties of this phenomenon without the necessity

of using synchrotron facilities. In other words, instead of

avoiding hybrid features when using tube-source diffract-

ometers, exciting them via standard reciprocal-space probing

techniques can lead to alternative methods for analyzing

epilayered materials. Here, besides presenting the theory and

discussing some properties of the hybrid reciprocal lattice,

experimental examples are given regarding the type of infor-

mation that can be accessed by analyzing the phenomenon

properly on commercial diffractometers.

2. Hybrid reciprocal-lattice theory

Any three-dimensional reciprocal lattice gives rise to a

phenomenon known as n-beam diffraction (Colella, 1974;

Chang, 1984; Weckert & Hümmer, 1997). Although it can

change the relative strength of Bragg reflections, no extra

features are generated in the reciprocal space since sums of

diffraction vectors always end up at a reciprocal-lattice point

(RLP). On the other hand, when two distinct reciprocal

lattices are superposed, as in epilayer/substrate systems, the

sum of diffraction vectors may end up at an empty position of

the reciprocal space. This occurs when one diffraction vector
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in the sum does not belong to the same lattice as the others. In

this case, hybrid reciprocal-lattice points (HRLPs) are gener-

ated, as illustrated in Fig. 1 and described mathematically

below.

Three-beam X-ray diffractions in single crystals are excited

when the incident beam (wavevector k and wavelength �)

fulfills two Bragg conditions:

k � P ¼ �P � P=2 ð1Þ
and

k �M ¼ �M �M=2: ð2Þ
Since P = M + N, we also have

k � N ¼ �N � N=2 � N �M ð3Þ
where P, M and N are diffraction vectors of the primary,

secondary and coupling reflections, respectively. The primary

reflection is the one whose intensity is been monitored, while

the secondary reflection is brought to the diffraction condition

by the crystal azimuthal rotation around P, as in X-ray

Renninger scanning (Renninger, 1937). Other cases of n-beam

diffractions with n > 3 will be treated here as coincidental

three-beam diffractions.

Only equations (1) and (2) are in fact necessary to predict

three-beam diffractions in a single lattice (Cole et al., 1962;

Caticha-Ellis, 1969), which can be either the epilayer or the

substrate one. However, there are several other similar

diffraction processes: the above-mentioned hybrid reflections,

whose secondary and coupling reflections do not belong to the

same lattice. To predict what should be the exact incident-

beam direction for exciting one such inter-lattice rescattering

process, equations (2) and (3) are more suitable to this

purpose, as demonstrated elsewhere for the case of satellite

reflections (Morelhão et al., 2003) and summarized here in

Appendix A for the case of epilayer/substrate systems.

Accounting for all possible rescatterings leads to a reciprocal

space that is highly populated with HRLPs and much more

complex than that obtained by just superposing both epilayer

and substrate reciprocal lattices. This hybrid reciprocal space

has been neglected; its features remain unexplored; all

knowledge on this matter is found in reports of a few acci-

dental observations (Hayashi et al., 1997; Domagala et al.,

2006), sometimes investigated (Morelhão et al., 2003), but

most of the time avoided in order not to compromise the

system characterization by standard diffraction techniques,

such as rocking curves and reciprocal-space mapping in triple-

axis goniometry.

To visualize the hybrid reciprocal space, let us label the

diffraction vectors of both lattices as

MS;L ¼ ha�S;L þ kb�S;L þ lc�S;L

and

NL;S ¼ ðH � hÞa�L;S þ ðK � kÞb�L;S þ ðL� lÞc�L;S
where S and L subscripts stand for the substrate and epilayer

reciprocal-lattice vectors, respectively. h, k and l are the Miller

indexes of the secondary reflection, and the complete hybrid

reciprocal space around one chosen HKL primary reflection

of the substrate lattice, whose diffraction vector is P = Ha�S +

Kb�S + Lc�S, only appears by rotating the sample around P by

360�. The position of all features regarding the P vector is then

given by

�P ¼ P0 � P ¼ h0�a� þ k0�b� þ l0�c�; ð4Þ
which is a sub-reciprocal-lattice of points with periodicity

�g� = g�L � g�S, for g� = a�, b� and c�, since h0, k0 and l0 are

integer numbers. They stand for either coupling-reflection

(H � h;K � k;L� l) or secondary-reflection (h; k; l) indexes

according to P0 = MS + NL or P0 = ML + NS, respectively.

Although equation (4) gives the general aspect of the

hybrid reciprocal lattice, there are a few restrictions that

should be considered for each particular system. One is the

direction of the secondary beam (wavevector kM = MS,L + k)

that must cross the epilayer/substrate interface in order for its

respective hybrid diffraction vector, P0 = MS,L + NL,S, to be

measurable. In other words, if n̂n is the interface normal

direction pointing upwards into the epilayer and � =

n̂n � kM=jkMj, we have that

ðh0; k0; l0Þ ¼ ðH � h;K � k;L� lÞ if � > 0;
ðh; k; lÞ if � < 0:

�
ð5Þ

Hence h0k0l0 are the indexes of the Bragg reflection that occurs

in the epilayer lattice. Refraction and total reflection of the

secondary beam, kM, at the interface is also a possibility to be

taken into account, mainly when � ’ 0. In general, epilayers of

quaternary alloys grown on miscut substrates present a rela-

tive tilt between both lattices, and this tilt must be considered

when calculating �g�.
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Figure 1
In epilayer/substrate systems, superposition of the substrate (circles) and
epilayer (ellipses) reciprocal lattices gives rise to inter-lattice rescattering
processes, as illustrated by the hybrid reciprocal-lattice point (HRLP)
with diffraction vector P0 = MS + NL. To excite one chosen HRLP, the
crystal must be at specific azimuthal ’ angles as detailed in Appendix A.
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2.1. Properties of the hybrid reciprocal lattice

One of the most interesting properties of the hybrid reci-

procal lattice is that the relative positions �P of the HRLPs

depend exclusively on the lattice mismatch between both real

lattices, i.e. their positions do not depend on the X-ray

wavelength. What changes with � is the azimuthal angle, ’,

where each HRLP is excited, as can be calculated by solving

equations (2) and (3); see Appendix A. This implies that

HRLPs are more easily excited with an X-ray beam that is

poorly collimated in the axial direction, i.e. the direction

perpendicular to the primary incidence plane: the plane that

contains the substrate vector P, the X-ray source and the

detector system. In commercial high-resolution diffract-

ometers, the beam is highly conditioned in the incidence plane

to about a few arcsec, while the axial divergence is of the order

of a few degrees (�2�). On the other hand, in synchrotron

facilities for X-ray diffraction, where the beam is well condi-

tioned in both directions, the azimuthal positioning of the

sample has to be more accurate if hybrid features are to be

measured (Morelhão et al., 2002, 2003).

In Fig. 2, the general properties of hybrid reciprocal lattices

are depicted. Just a few points aligned along the growth

direction occur in the case of fully strained layers (Fig. 2a), or

a well defined three-dimensional lattice of points around the

substrate reciprocal-lattice points occurs in the case of relaxed

layers (Fig. 2b). Consequently, strain gradients along the layer

thickness give rise to a hybrid lattice of rods instead of points,

as illustrated in Figs. 2(c) and 2(d). Besides the fact that

HRLPs are excited only at certain azimuthal positions, their

experimental observation via conventional reciprocal-space

mapping techniques also require detection optics with some

angular acceptance in the axial direction. When a given HRLP

is excited, its diffraction vector P0 = �P + P is not on the

primary incidence plane and neither is its diffracted beam k0 =

P0 + k. Therefore, visible HRLPs are those whose diffracted

beam, k0, falls within the angular range of axial acceptance of

the detection system. Moreover, HRLP positions on reci-

procal-space maps correspond to projections of �P on the

incidence plane. In terms of longitudinal and transversal

components of the maps, Qz and Qxy, respectively, the HRLPs

are seen at

Qz ¼ �P � ẑz and Qxy ¼ �P � k̂kxy; ð6Þ
where ẑz = P=jPj and k̂kxy = ½k� ðk � ẑzÞẑz�=jk� ðk � ẑzÞẑzj. It is then

possible to calculate

� ¼ �Qxy tanð�’Þ ð7Þ
as the takeoff angle of k0 from the incidence plane of the

primary reflection. �’ = ’0 � ’, and ’0 is the azimuthal posi-

tion of P0 around P with respect to the same reference

direction for ’ and in the same sense of rotation.

2.1.1. Strain grading. A unique property of hybrid reflec-

tions arises from the layer reflections since they are always

Laue reflections, i.e. transmitted–diffracted beams where

diffraction occurs through the entire layer thickness. In any

other X-ray diffraction technique, structural analyses of layers

are carried out by means of Bragg reflections: those with

reflected–diffracted beams. Therefore, in principle, HRLPs

are equally sensitive to lattice mismatch at both the top and

the bottom of the epilayer. Hence, strain variation across the

layer thickness should generate elongated HRLPs, i.e. HRL

rods, oriented at specific directions on reciprocal-space maps.

Except for the particular cases discussed in Figs. 2(c) and 2(d),

which are sensitive only to the in-plane strain grading, the

general orientations of the rods are affected by the elastic

properties of the layer compound; for example, in the case of

(001) growth on cubic systems with parallel, �"k, and

perpendicular, �"?, strain gradings. The h0k0l0 HRL rod

around a symmetric primary reflection will be oriented at an

angle �G where

tan�G ¼ �Qz

�Qxy

¼ �l0

ðh02 þ k02Þ1=2 cosð�’Þ
�"?
�"k

; ð8Þ

assuming a tetragonal distortion of the layer unit cell varying

as a function of the strain according to a = b = aLð1 þ "kÞ and

c = aLð1 þ "?Þ; aL is the unstressed layer lattice parameter and,

for isotropic materials,
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Figure 2
Properties of the hybrid reciprocal lattice in epilayer/substrate (001)
cubic systems. (a) HRLPs near symmetrical, 002, 004 and 006, and
asymmetrical, 224, substrate reflections. In fully strained layers, �a� =
�b� = 0, equation (4), and hence the HRLPs are aligned along the (001)
growth direction and they are distinguished only by their l0 index, shown
beside each one of them (dark spots). The HRLP with l0 = 0 coincides
with the substrate RLP marked by S. L stands for the layer RLP. (b)
Relaxed layers where �a� = �b� 6¼ 0 provide a three-dimensional hybrid
lattice around either symmetrical, 004, or asymmetrical, 224, primary
substrate reflections. (c), (d) Strain grading along the layer thickness gives
rise to elongated HRLPs towards the substrate one. HRLPs with index l0 =
0 lay on the layer in-plane direction, and (d) they are distinguishable from
the substrate RLP if some relaxation occurs at the layer/substrate
interface, the h0k0 indexes are given. In the insets, ajj and a? stand for the
in-plane (parallel) and out-plane (perpendicular) unit-cell parameters of
the layer, respectively. a0 is the substrate lattice parameter. In these
examples, a?> a0, and only HRLPs in which j�j> 0:008, equation (5), are
shown.

electronic reprint



�"?
�"k

¼ � 2�

1 � � ; ð9Þ

where � is the Poisson ratio. Being able to predict HRL rod

orientation due to grading is important since there are other

causes for the elongated shapes of the HRLPs, as better

explained below.

2.1.2. Anisotropic mosaicity. Besides strain grading and

finite layer thickness effects, the HRLPs may also present

elliptical shapes due to mosaicity in the epilayer. Most

diffraction vectors taking part in hybrid reflections have both

in-plane and out-plane components, and therefore they are

sensitive to the spatial misorientation of the crystallites, or

mosaic blocks, building up the epilayer. In-plane rotation of

the crystallites around the growth direction gives rise to a

mosaicity of width �k, while crystallite rotations around in-

plane axes give rise to an out-plane mosaic width �?. It is

possible to compute effects of mosaicity on the shape and

orientation of the HRLPs by projecting the trajectory of the

reciprocal vector

�H ¼ �kðẑz� r̂rÞ sin þ �?½ðẑz� r̂rÞ � r̂r� cos ð10Þ
on the incidence plane of the reciprocal-space maps as  
varies through 360�. r̂r = H=jHj and H is the layer diffraction

vector in P0 = MS,L + NL,S, i.e. either H = ML or H = NL. The

orientation angle �M is with respect to the direction of largest

projection so that

tan�M ¼ �Qz

�Qxy

¼ �H � ẑz
�H � k̂kxy

ð11Þ

when the value of �Q2
z + �Q2

xy is a maximum.

3. Results and discussions

Occurrence of experimental HRLPs is demonstrated in Fig. 3,

obtained in a sample with a single 1 mm thick ZnSe epilayer on

GaAs (001) substrate. Proper identification of the HRLPs is

given in Table 1. The reciprocal-space maps were collected on

a Philips X’Pert-MRD high-resolution diffractometer: Cu

tube, X-ray mirror, four-crystal asymmetric 220 Ge mono-

chromator and three-bounce 220 Ge analyzer crystal; nominal

spectral width ��=� = 5 � 10�5; X-ray beam divergences

0.005� and 2� in the incidence plane and the axial direction,

respectively.

Direct and complete strain analysis of the epilayer is

possible even from reciprocal-space maps of the symmetric

002 GaAs reflection when HRLPs are excited. The Qxy

components of the HRLPs in Figs. 3(b), 3(c) and 3(d) are well

reproduced by using �a� = �b� = �5.15 (12) � 10�4 Å�1, and

their longitudinal separation (an integer fraction of the layer–

substrate reciprocal-lattice point distance) provides �c� =

�4.43 (33) � 10�4 Å�1. Hence, assuming a Poisson ratio of � =

0.5, which implies "?="k = �2, the fully relaxed lattice para-

meter of the layer compound is obtained as aL = 5.6691 (4) Å,

which is the same as the nominal value of the ZnSe compound,

while the epilayer undergoes an expansive in-plane strain "k =

1.36 (54) � 10�4.

HRLPs in Fig. 3(d), numbers 10 and 11, have the largest

observed Qxy component, scattering within a theoretical

takeoff angle � = 	0.14�, equation (7), but still accepted by the

analyzer system of the diffractometer. In fact, the minimum

required acceptance of the analyzer system should be, in

general, equal or larger than the axial divergence, since the

experimental takeoff angles are increased by an amount

corresponding to the difference between ’h0k0l0 and ’ values in

Table 1. For instance, HRLPs 3 and 4 would not appear on the

map in Fig. 3(b) if the axial acceptance was below 1.08�.

HRLPs with a null Qxy component, such as those numbered

5, 8, and 9 in Figs. 3(b) and 3(c), cannot be related to second-

order sequences of reflections. 00l0 hybrid reflections do not

occur for partially or fully relaxed epilayers on (001)

substrates because �a� and �b� in equation (4) have non-null

values. Sequences of third-order, such as �111�11L + 004S + 1�11�11L

and �1113S + 00�44L + 1�113S can explain the 00�22 and 00�44 type of

HRLP even in relaxed layers. Note that when carrying out

longitudinal scans, i.e. !–2� scans, HRLPs along the primary
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Figure 3
Reciprocal-space maps, 002 reflection, ZnSe (1 mm thick) relaxed layer on GaAs (001), recorded with Cu K�1 radiation at different azimuthal ’ angles.
(a) ’ = 0, only the 002 substrate (S) and layer (L) RLPs are seen; the former is at Qz = 2/a0 = 0.35377 Å�1. (b) ’ = 27.6�, (c) ’ = 30�, and (d) ’ = 45�. [110]
is the in-plane reference direction for the ’ rotation of the sample around the [001] direction. Visible HRLPs, in (b), (c) and (d), are numbered and
identified by their transversal components Qxy in Table 1. White bars represent 1.6 � 10�3 Å�1. Mesh size: 2.48 � 10�5 Å�1 in Qxy per 3.27 � 10�5 Å�1 in
Qz.
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reflection axis generate extra features even in samples with a

single epilayer. Moreover, in ordinary rocking curves, hybrid

intensity contributions could be misinterpreted as due to

sublayers or other sorts of structural change, such as compo-

sition grading.

Two hypotheses have been verified to explain the elongated

shapes of the experimental HRLPs in Fig. 3. The strain

grading hypothesis should, according to equation (8), reduce

the absolute value of �G as the in-plane component of P0

increases. The expected values of �G, calculated using � = 0.5,

are given in Table 1. Although elongations happen in the same

sense as the observed ones, their behaviour as the h0k0 indexes

increase is the opposite of that expected. For instance, �G =

+70.1�, +47.6� and +33.4�, are the expected values for the

HRLPs numbered 6, 1 and 10, while the observed values are

instead �E = +58 (2)�, +75 (2)� and +80 (2)�.

A successful explanation for the elliptical shapes of the

HRLPs comes from mosaicity in the epilayer. Its 002 reci-

procal-lattice point in Fig. 3 (spot labeled L) has a full width at

half-maximum (FWHM) of 17.5 � 10�5 Å�1 along the Qxy

coordinate, yielding an out-plane mosaic width of �? = 0.024�.

Fig. 4(a) shows the computed directions of maximum projec-

tion of the �H vector onto the QzQxy maps, described by the

angle �M, equation (11), as a function of mosaicity–anisotropy

ratio �k=�?. A very good match to the experimental values is

obtained for a ratio of 0.67 (3), as can be seen by comparing

�M and �E in Table 1, and then, �k = 0.016 (1)�. Projection

shapes for this ratio value are given in Fig. 4(b). In theory

(Fig. 4a), hybrid reflections of indexes 1�11�11 and �111�11, HRLPs 6

and 7, have better sensitivity to the in-plane mosaicity, and

they are used to estimate the 	0.03 error bar of the found

ratio value.

4. Conclusions

Hybrid reciprocal lattices for X-ray diffraction in epilayer/

substrate systems exist. Without a systematic description, such

as that provided in this work, accidental excitement of hybrid

reflections in most X-ray diffraction techniques can jeopardize

data analysis. On the other hand, understanding their prop-

erties leads to three-dimensional information of the layer

structure even in symmetrical high-angle diffraction geome-

tries. In the case analyzed here, from reciprocal-space maps of

a single symmetric reflection we were able to determine
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Figure 4
(a) Orientation angle �M of the HRLPs 1 and 2 (dashed line), 6 and 7
(solid line), and 10 and 11 (dot-dashed line), Table 1, as a function of the
anisotropy ratio �k=�? between the in-plane, �k, and out-plane, �?,
mosaic widths. Values were computed according to equation (11).
Experimental values (squares) from the reciprocal-space maps in Fig. 3
are also shown. (b) Theoretical shapes and orientations for 67% of
anisotropy in the epilayer mosaicity, numbered and sized according to
Fig. 3. Obtained �M values are compared with the experimental ones in
Table 1.

Table 1
Hybrid reciprocal-lattice points observed in Figs. 3(b), 3(c) and 3(d), as indicated by HRLP number and h0k0l0 indexes.

Qxy values are obtained by using �a� = �b� = �5.15 � 10�4 Å�1 in equations (4) and (6). P0 = MS,L + NL,S is the hybrid diffraction vector, and � is the cosine
director of the secondary beam, equation (5). A few third-order hybrid diffractions are also visible: HRLPs 5, 8 and 9. Exact azimuthal ’h0k0 l0 angles where each
HRLP is excited have been calculated as described in Appendix A. The crystal azimuthal position during data collection is given in the ’ column: values with
respect to the [110] in-plane reference direction. � is the diffracted-beam takeoff angle as defined in equation (7). Elliptical-shape orientation angles of the HRLPs
in the reciprocal-space maps, Fig. 3, are given by �E (experimental values), while �G and �M are theoretical values according to two distinct hypotheses, as
explained in the text. Angular values are given in degrees.

HRLP h0k0l0 Qxy (Å�1) P0 �=j�j ’h0k0 l0 ’ � �E (	2) �G �M

1 �33�11�11 �9.50 � 10�4 313S þ �33�11�11L +1 27.7043 27.6 +0.116 +75 +47.6 +75.2
2 31�11 +9.50 � 10�4 31�11L þ �33�113S �1 27.8258 27.6 �0.116 �75 �47.6 �75.2
3 �2200 �2.92 � 10�4 202S þ �2200L +1 28.5022 27.6 +0.087 +90 0.0 +90.0
4 200 +2.92 � 10�4 200L þ �2202S �1 28.5928 27.6 �0.087 �90 0.0 �90.0
5 00�22 – 202S þ 00�22L þ �2202S +1 28.5865 27.6 – – – –
6 1�11�11 �3.65 � 10�4 �1113S þ 1�11�11L +1 30.1328 30.0 �0.056 +58 +70.1 +58.5
7 �111�11 +3.65 � 10�4 �111�11L þ 1�113S �1 30.0750 30.0 +0.056 �58 �70.1 �58.5
8 00�22 – �111�11L þ 004S þ 1�11�11L �1 30.0369 30.0 – – – –
9 00�44 – �1113S þ 00�44L þ 1�113S +1 29.8584 30.0 – – – –

10 3�33�11 �15.4 � 10�4 �3333S þ 3�33�11L +1 44.6644 5.0 �0.136 +80 +33.4 +77.7
10 �33�33�11 �15.4 � 10�4 333S þ �33�33�11L +1 45.3356 45.0 +0.136 +80 +33.4 +77.7
11 �333�11 +15.4 � 10�4 �333�11L þ 3�333S �1 44.5215 45.0 +0.136 �80 �33.4 �77.7
11 33�11 +15.4 � 10�4 33�11L þ �33�333S �1 45.4785 45.0 �0.136 �80 �33.4 �77.7
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parallel and perpendicular lattice mismatches, the stress state

of the epilayer, the absence of strain grading, and the spatial

misorientation of mosaic grains in the layer.

APPENDIX A
Bragg condition for hybrid reflections

Let us initially consider a given three-beam diffraction of the

substrate lattice in which P = M + N. In the reference system

ðx̂x; ŷy; ẑzÞ where ẑz = P=jPj, x̂x is an arbitrarily chosen in-plane

direction perpendicular to P, and ŷy = ẑz� x̂x, the incident beam

wavevector

k ¼ ���1ðcos! cos ’ x̂xþ cos! sin ’ ŷyþ sin! ẑzÞ ð12Þ
fulfills the two Bragg conditions in equations (1) and (2) when

! = !0 and ’ = ’0. Hence, !0 is the Bragg angle of the primary

reflection, diffraction vector P, and ’0 can be calculated by the

expression

cosð’0 � �Þ ¼
�jMj=2 � sin!0 cos 	

cos!0 sin 	
ð13Þ

given that M = jMjðsin 	 cos � x̂x + sin 	 sin � ŷy + cos 	 ẑzÞ.
The problem is how to calculate the exact incidence, ! =

!0 + �!, and azimuthal, ’ = ’0 + �’, angles of a hybrid

reflection whose effective diffraction vector is P0 = MS,L + NL,S.

Since P0 is not parallel to the ẑz axis, equation (13) is no longer

valid for either MS or ML diffraction vectors of the secondary

reflection. To solve this problem we first wrote (Morelhão et

al., 2002)

k ’ k0 þ
@k

@!
�!þ @k

@’
�’ ¼ k0 þ k!�!þ k’�’ ð14Þ

and then equations (2) and (3) were used to build the system

of linear equations�
k! �M k’ �M
k! � N k’ � N

��
�!
�’

�
¼ �

� ðM=2 þ k0Þ �M
ðN=2 þMþ k0Þ � N

�
ð15Þ

where M and N stand for MS,L and NL,S, respectively.

The ’h0k0 l0 values in Table 1 were calculated by solving the

above equations. For instance, consider the �111�11 HRLP, line 7

in Table 1. Since the 002 GaAs reflection is the primary one

and the [110] crystallographic direction was chosen as refer-

ence for the ’ rotation,

x̂x ¼ ½1; 1; 0�=21=2; ŷy ¼ ½�1; 1; 0�=21=2 and ẑz ¼ ½0; 0; 1�:
The corresponding substrate three-beam diffraction occurs at

!0 ¼ 15:8132� and ’0 ¼ 30:0442�;

as obtained from equation (13) since 	 = 125.2644�, � = 90�

and jMj = 31/2/a0. The !0 and ’0 angles provide the wavevector

k0 from equation (12), as well as k! and k’. By replacing in

equation (15)

M ¼ ML ¼ ½�1=a; 1=b;�1=c� and N ¼ NS ¼ ½1;�1; 3�=a0;

with a = b = 5.6699 Å, c= 5.6676 Å and a0 = 5.6534 Å, we have

�! ¼ 0:0794� and �’ ¼ 0:0308�;

which leads to ’h0k0 l0 = ’0 + �’ = 30.0750� in Table 1.

An alternative approach to calculate the Qz and Qxy coor-

dinates of the HRLPs, equation (6), is available after deter-

mining �! and �’. Since k is known, we also know k0 = P0 + k,

k̂kxy ¼ �ðcos ’ x̂xþ sin ’ ŷyÞ and ŝs ¼ ðsin ’ x̂x� cos ’ ŷyÞ:
By defining

k0off ¼ ðk0 � ŝsÞŝs and k0in ¼ k0 � k0off;

we have

!0 ¼ arccosðk̂kxy � k0in=jk0injÞ;
and hence

Qz ¼ ðsin!0 þ sin!Þ=�� jPj
and

Qxy ¼ ðcos!0 � cos!Þ=�:
This approach also provides an alternative expression,

� ¼ arctanð�k0 � ŝsÞ;
to calculate the takeoff angle given in equation (7).
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