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Abstract

Phase invariants are important pieces of information about the atomic structures of crystals. Several mathematical
methods in X-ray crystallography are used to estimate phase invariant values. Multiwave diffraction experiments offers
a unique opportunity for physically measuring phase invariants. In this work, the underneath principals for developing
an automatic procedure to measure phase-invariant values are described. A general systematic procedure is demon-
strated, in practice, by analyzing intensity data from a KDP crystal.
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1. Introduction

In X-ray crystallography, the phases of the dif-
fracted waves are estimated by mathematical
methods, generally known as Direct Methods [1],
for analyzing intensity data sets composed of a
large number of reflections. These methods exploit
algebraic or probabilistic relationships among the
phase values, some of which are the triplet phase
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invariants. Physical measurements of such phase
invariants are of great interest since, in principle,
they could improve or extend the efficiency of the
Direct Methods to complex structures such as
proteins. It would have to be compared to other
procedures that are actually used to the same pur-
poses, such as Multiple Anomalous Dispersion and
Multiple Isomorphous Replacement [2].

Triplet phase invariants (or just phase unless
specified) are physical quantities accessible via
three-beam diffraction (3BD) experiments [3,4]
where the interference of simultaneously diffracted
wavefields provide information on phase values.
Experimental and analytical difficulties are still in-
volved in phase determination, such as the reduce
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number of 3BD cases suitable for phasing.
Recent researches are focused on developing and
optimizing experimental data collection proce-
dures for fast physical phasing of several reflec-
tions [5,6]. On the other hand, there are also
efforts toward improvement of accurate phasing
techniques [4,7,8] with the objective of studying
crystalline structures from the phase values them-
selves. For example, depending on the achieved
experimental accuracy, electron density of chemi-
cal bonding charges [9] or even distortion of
molecules under applied electric field can be inves-
tigated by monitoring a few triplet phases. Note
that each triplet phase is an absolute value since
it already is the phase differences between two dif-
fracted X-ray waves, and not a relative quantity
such as obtained in peak position or intensity
measurements.

This work has been motivated by our desired of
developing at LNLS instrumental and analytical
conditions to push physical phase measurements
from the state-of-art to routinely and automatic
phasing procedures; otherwise it will be very diffi-
cult to non-expert users to take advantages of the
new possibilities offered by measuring this physi-
cal quantity with good accuracy (something in be-
tween +2° and +20°). There are a few accurate
methods currently in use, some are based on mea-
suring Friedel related 3BD cases [4,7] and another
by exploiting the linear polarization of the syn-
chrotron radiation [8,9], but in all methods more
than a single 3BD interference profile has to be
measured to increase accuracy. In the latter, the
set of profiles are from a same 3BD case and,
therefore, neither spatial reorientation of the crys-
tal nor change in the incidence angle are required;
the diffraction geometry — diffracted beam direc-
tions with respect to the crystal dimensions — is
exactly the same during the data collection, only
the incident-beam polarization direction changes.
Here, we outline the underneath principals of an
automatic procedure for analyzing such polariza-
tion-dependent data sets and extracting the phase
values as accurate as possible. A general system-
atic procedure is demonstrated, in practice, by
analyzing 3BD intensity data from a KDP crys-
tal, and the major sources of errors are pointed
out.

2. Theoretical basis

In general, the 3BD intensity profiles are domi-
nated by the interference of two diffracted waves
[5]. It leads to a relatively simple parametric equa-
tion [10],

1(p,0) = {(1 = blf (@))I1De|* + [Dsc(o)I®
+EDp - Dy (@) + Dy - Dsc()]} + G(o),
(1)

that can be used to fit most of the experimental
intensity profiles and to extract the phase values.
Dp=Dyp and Dsd@)= DoR (fp)exp(idt) vsc
are the amplitudes of the primary and secondary
electric displacement wavefields generated by the
primary reflection P, and by the S+ C detour
reflection (also known as Umweg reflection). R
stands for maximum amplitude ratio of these
waves. vp and vgc are polarization factors for lin-
early polarized incident radiation [5]. ot is the
phase difference between these waves, which is
the triplet phase invariant. A convolution with a
gaussian function G(¢), with FWHM = wg is nec-
essary to account for the instrumental width wg.
o) =wy/[2(¢ — @o) — iw,] is a line profile func-
tion (FWHM = w, w; = 4+ w) describing the intrin-
sic 3BD profile as a function of the crystal ¢
rotation around the diffraction vector of reflection
P. In the standard 2nd-order approximation of the
diffracted wavefields [4,5], of which Eq. (1) was
first obtained [8], £=1 and »=0. As discussed
elsewhere [10], these parameters account for
peak-like and dip-like symmetrical distortion of
the interference profiles, or in other words, for
the Unweganregung (¢ < 1) and Aufhellung (b > 0)
effects on the profiles [4]. Calculation of their exact
values would require precise description of the dif-
fraction process, including crystalline imperfec-
tions. As consequence of our limitation for easily
estimating their values, several profiles have to be
analyzed simultaneously.

Essentially, the analytical problem resides on
how to adjust the vector of parameters p=
[w,R,E, b, pg,ws], In Eq. (1), without influence
the ot value. Here, a simple and fast evolutionary
algorithm (DEA) [11] has been used for fitting
each experimental profile. The improvements of
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the fittings are guided by the mean-absolute devia-
tion function E(p) = S0, [l (@,) — 1(p,0,)l/
(N — 1), where N is the number of intensity data
points collected at the ¢,, positions in a give ¢-scan.
The basic strategy is then to find out the minimum
value of E(p), Ey as a function of dt, which provide
the Ey(d1) curve, while the parameters in p are kept
within reasonable ranges of allowed values Ap =
[Pmin:Pmax)- The minimum of the Ey(dt) curve,
0Ey/061 = 0, provide the experimental value for .

3. Results and discussions

Fig. 1 shows a polarization-dependent set of
3BD data collected at Brazilian Synchrotron Light
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Fig. 1. Experimental (open circles) and simulated (solid lines)
@-scans of the 260/112/152 (P/S/C reflections) three-beam
diffraction in a KDP crystal (dimensions: 7 x 5 x 3 mm along
the [1 00], [0 1 0], and [0 0 1] directions, respectively) taken at
different polarization angle y (right-hand side of each scan).
[001] is the reference direction (¢ =0, inset), X-ray photon
energy is 7482 eV; further experimental details can be found
elsewhere [12]. The intensity scale is linear, but for visualization
purposes the ordinates of some scans are shifted from their
actual values, given at the left (in cps). The ¢-scan at y = 16°
(gray scan) was mistakenly collected at the shoulder of the 260
reflection (Aw =0.003°, 30% of the FWHM =0.01°). The
flexibility of the fitting equation, Eq. (1), to reproduce these ¢-
scans is exploited in Fig. 3(b). Theoretical values: triplet phase
ot = —2.6°, structure factor modulus |Fp| = 58, |Fs| = 101, and

Laboratory (LNLS) with the polarimeter-like dif-
fractometer described elsewhere [12]. It is com-
posed of several ¢-scans taken at different
polarization angles y as indicated there.
Instrumental broadening effects on the interfer-
ence profiles, as illustratively shown in Fig. 2(a),
can reduce accuracy when combined with the
uncertainty of the R parameter, which is in fact
the major source of inaccuracy, as demonstrated
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Fig. 2. (a) Simulated instrumental broadening effects on ¢-
scans. Simulation parameters used into Eq. (1): o1 = —2.6°,
7 =132° and p=1[0.0012°1.0,0.8,0.0,67.683°,ws] where the
instrumental width values, wg are indicated by arrows.
Ap = ¢ — @o. (b) Theoretical accuracy in phase measurements
as a function of the instrumental width wg and amplitude ratio
R. The Ey(d1) curves were obtained by fitting the profiles in
Fig. 2(a), with wg =0.001° (open circles) and 0.006° (closed
circles). The fittings have been carried out by the DEA within
the allowed range: Ap=[0.0008°:0.0024°, R,0.2:1.0,b, ¢ —
0.012°:¢p + 0.012°,0.001°:0.007°] where R =1.0 (black lines)
or R=10.6:1.4] (gray lines), and »=0. Definition on 0E,/
0t = 0 position gives the accuracy on dr.
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in Fig. 2(b). The Ey(dt) curves in Fig. 2(b) is just
showing that it is not possible to extract an accu-
rate values of ot from a single ¢-scan when R is
an unknown value.

The best strategy, that we could elaborate, for
accurate determination of triplet phases is compos-
ing polarization-dependent sets of azimuthal
scans, as the one in Fig. 1, and then, search for
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Fig. 3. Absolute-mean deviations as a function of dr, Eo(d1)
curves, obtained for (a) the simulated scans and (b) the
experimental scans in Fig. 1. All curves are normalized by its
minimum value and add to an integer for better visualization.
The curves with minima equal to 1, 2, 3, 4, 5, and 6 correspond
to those scans with y=28°, 12° 16° 20° 24° and 32°
respectively. Allowed range is Ap=[0.0010°:0.0014°, R,
0.0:1.0, b, @9 — 0.012°¢ + 0.012°, 0.001°:0.006°] where the
R-values or ranges are shown in the figure for each set of curves,
and b = [0.0:3v%] except for the set at the bottom-left (b = 0). v*
changes the upper limit of the » range with the polarization
angle; here v = sin’y.

the value of R that provides 0E/0ét+ =0 as close
as possible of a same Jt value. Here this search
strategy has been applied in two sets of azimuthal
scans: a simulated one that is free of instrumental
effects such as statistic noise and sample misalign-
ments, and another that is the experimental data in
Fig. 1. The Ey(ot) curves of the simulated ¢-scans
for several values of R are shown in Fig. 3(a),
while Fig. 3(b) shows the respective Ey(dt) curves
for the experimental data.

Instrumental imprecision in positioning the pri-
mary reflection is a source of errors, as observed
for the gray curve in Fig. 3(b). It corresponds to
the scan taken at shoulder of the primary reflection
(Fig. 1). The behavior of the curve with minimum
at 1 is also different of the other curves. Ellipti-
cally-polarized radiation in the incident beam
could explain this behavior since its contribution
to the primary beam is more significant around
the m-polarization (y =~ 0). Angular divergences in
the horizontal plane compromise accuracy at high-
er polarization angles. If 5 =0 (no Aufhellung ef-
fect) the minima of the curves (2,4,5, and 6) do
no occur at a same ot value, but if wide ranges
are allowed for this parameter the accuracy is lost.
Although the full range has been allowed for &,
from 0 to 1, their final values are observed in the
range from 0.4 to 0.8 (bottom-right set of curves
in Fig. 3(b)).

4. Conclusion

The data analysis presented here have demon-
strated that a systematic phasing procedure is fea-
sible, at least for some 3BD cases where the
deviation of the 2nd-order solution from the exact
one — accounting for crystalline imperfections and
absorption — can be compensated by the ¢ and b
parameters without affecting the phase values.
Further investigation is still necessary to identify
the most suitable 3BD cases for phasing with this
method, but some general rules pointed out by
other authors [4] seem to be also valid here: good
quality crystals for maximizing ¢, |Fs| ~ |F¢| for
minimizing b, and |Fs||Fc|/|Fp|* > 2 for enhancing
phase sensitivity (Fg is the structure factor of
reflection G).
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