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For decades, solving the phase problem of x-ray scattering has been a goal that, in principle, could be
achieved by means of n-beam diffraction (n-BD). However, the phases extracted by the actual n-BD
phasing techniques are not very precise, mainly due to systematic errors that are difficult to estimate.
We present an innovative theoretical approach and experimental procedure that, combined, eliminate two
major sources of error. It is a high precision phasing technique that provides the triplet-phase angle with
an error of about 2±.
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It is well known that the n-beam diffraction (n-BD) phe-
nomenon contains structural phase information and can
provide a physical solution to the fundamental phase prob-
lem in x-ray crystallography [1–8]. Several phasing tech-
niques based on n-BD have been proposed during the last
few decades [9–13]. For practical applications, these tech-
niques are time-consuming and limited to a few n-BDs
that present good phase sensitivity. Very recently, several
authors have demonstrated that the linear polarization of
synchrotron radiation can be used to change the relative
strength of multiple diffracted waves [14,15] and/or im-
prove phase sensitivity in some cases [16]. Polarization re-
solved n-BD has also been considered for enhancing phase
sensitivity [17]. However, phase determination is more
complex than just carrying out measurements at optimized
phase sensitive conditions. In fact, there are unpredictable
systematic errors, such as the loss of phase coherence of
the diffracted waves due to crystal defects, that are difficult
to estimate, causing the reliability on the measured phases
to be highly questionable.

This Letter introduces very simple modifications in a
standard theoretical approach for n-BD that completely
eliminates the most common systematic errors in phase
determination. In this modified approach, which is capable
of dealing with interfering wave fields partially coherent,
the errors of the measured phases are extremely small,
about 2±. A scattering angle of p�2 is used for increasing
phase sensitivity and resolution, as well as for collecting
a polarization-dependent set of data that provides a sense
of the reliability of the results. Moreover, this is a n-BD
phasing technique that can be carried out fully automated
on samples with unknown structure.

The physical principle of the n-BD phase sensitivity
relies on the fact that two or more excited wave fields, from
different sequences of reflections inside a crystal, interfere
as they travel along the same propagation direction. For
example, the Dp and Dd wave fields of the three-BD are
shown in Fig. 1, both with wave vector kA. Dp is produced
by a single Bragg reflection, represented by plane A, while
Dd comes from a double-bounce reflection in the planes B
and C. By keeping one wave excited and changing the
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angular condition for the other, characteristic interference
profiles are obtained. These profiles carry information on
the phase difference between the waves. For the three-BD,
the simplest n-BD case, it is known as the triplet phase
�CT�, which is the sum of the structure factor phases of
the B and C reflections minus the phase of the A reflection,
i.e., CT � dB 1 dC 2 dA.

Azimuthal scans (f scans) generate three-BD interfer-
ence profiles as the secondary wave field, Dd, is excited by
the rotation of the crystal around the diffraction vector of
the primary reflection (A reflection in Fig. 1) whose wave
field, Dp, is kept excited during the f scans. At their maxi-
mums, these wave fields are given by Dp � DAype

idA

and Dd � DBCydei�dB1dC�, where DA and DBC are

FIG. 1. Three-beam diffraction in a single crystal. The pri-
mary, Dp, and secondary, Dd, wave fields are generated by the
A reflection (represented by the plane A) and by the sequence
of B and C reflections, respectively. The reflection indexes of
B 1 C are equal to A. g is the angle between these wave fields,
kA,B are the wave vectors of the diffracted beams, and ê is the
polarization direction of the incident synchrotron radiation. The
x axis rotates the crystal around the incident beam. In terms of
x , ê � sinxŝ 1 cosxp̂ .
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proportional to the magnitude of the incident wave
field and to the Fourier components of the crys-
tal polarizability for the respective reflections. The
vectors yp � k̂A 3 k̂A 3 ê and yd � k̂A 3 k̂A 3

�k̂B 3 k̂B 3 ê� represent the dependence of the waves
on the linear polarization direction, ê, of the incident
synchrotron radiation — the cross products are done from
right to left. The intensity due to the superposition of
these waves along the primary beam direction, k̂A, as a
function of f is

I�f� � D2
Ay2

p 1 jf�f�j2D2
BCy2

d

1 2jf�f�jDBCydDAyp cosg cos�CT 1 V� . (1)

The function f�f� is the resonance term [11,13,17] describ-
ing the excitation of the secondary wave, Dd, during the
f rotation. In practice, simple functions can be used as
the resonance term for fitting the azimuthal scans and ex-
tracting the triplet phases. Here, the function

f�f� �
6w

2�f 2 f0� 2 iw
, (2)

serves this purpose. Its phase angle, V�f� �
6 tan21�w�2�f 2 f0��, properly takes into account
the 180± phase shift across the maximum of the scattering
condition at f0. The FWHM of the Lorentzian function,
jf�f�j2, is w. The 1 (in�out) and 2 (out�in) signals
stand for two distinct geometries in which the Dd wave is
excited in a full rotation of the f axis. The third term of
Eq. (1) is the interference term, the term that has the phase
information and is responsible for the asymmetry in the
three-BD profile. The optimal phase sensitive condition
occurs when the wave fields are parallel, cosg � 61 [18],
and have nearly the same amplitude, jDpj � jDdj [11,17].

The approach for the three-BD given by Eq. (1) is
within the framework of the 2nd-order Born approxima-
tion [13,19,20]. Although it allows a good description
of the diffraction process when the primary wave is
weaker than the secondary wave, i.e., jDpj , jDdj, it has
two major deficiencies: (i) it assumes that the diffracted
wave fields are completly coherent and (ii) it fails in
describing the reduction in the magnitude of a strong
primary reflection due to the amount of energy taken by
the kB beam, the so-called Aufhellung effect [21]. The
n-beam dynamical theory [2,11] exactly describes the
energy balance among the diffracted beams but can only
be applied for perfect crystals. Crystalline imperfections
generate diffracted waves without phase coherence,
known as kinematical diffraction, which are unable to
participate in the interference predicted by the third term
of Eq. (1). In order to effectively include these two effects
(loss of coherence and Aufhellung), we introduce two new
parameters into Eq. (1), which becomes

I�f� � D2
Ay2

p�12 bjf�f�j2� 1 jf�f�j2D2
BCy2

d

1 2
p

1 2 a jf�f�jDBCydDAyp

3 cosg cos�CT 1 V� . (3)
015501-2
The
p

1 2 a takes into account the attenuation of the
contribution of the interference term to the intensity pro-
file. This attenuation is due to the loss of coherence of
the kinematically diffracted waves —hereinafter called the
kinematical effect. The introduction of the attenuation pa-
rameter a, ranging from 0 to 1, is justified by the extreme
physical limits of Eq. (3) that these values represent; for
a � 0 the waves are completely coherent, while for a � 1
they have no phase coherence, then, no interference is ob-
served, and the f profile has a symmetric shape given only
by jf�f�j2. The b parameter stands for the reduction in the
intensity of the base line, jDpj

2, as the secondary wave is
exited. Under the present approach, Eq. (3) can be split up
in two terms, I�f� � I��f� 1 I^�f�, where

I��f� � D2
Ay2

p 1 �1 2 a� jf�f�j2D2
BCy2

d

1 2
p

1 2 a jf�f�jDBCyd

3 DAyp cosg cos�CT 1 V� (4)

and I^�f� � �aD2
BCy

2
d 2 bD2

Ay2
p� jf�f�j2. I��f� is the

asymmetric term of the profile, containing the phase infor-
mation, and I^�f� is the symmetric term due to kinematical
and Aufhellung effects. Although the a and b parameters
provide only symmetric contributions to the profile of the
f scan, assignment of any value, different from zero, to
these parameters does distort the asymmetry of the pro-
file. Consequently, by fitting a profile (even one measured
in the optimized phase sensitivity condition) with diffrac-
tion theories that neglect one or both effects, the amount
of distortion cannot be estimated. This generates system-
atic errors preventing an accurate value of CT to be ex-
tracted, unless both effects happen to cancel each other,
i.e., aD2

BCy
2
d � bD2

Ay2
p. It is also very important to em-

phasize that the profiles of these effects, summarized in
I^�f�, have been assumed here to be the same as that of
the resonance term. It is certainly valid for crystals with
low levels of defects or with surface damages, or even for
an incident beam with short longitudinal coherence length.
Otherwise, more appropriated functions in I^�f� must be
used for describing the presence of defects in the materials.
Independently of the types of defects, the resonant term in
I��f� stays unchanged, as given by Eq. (2). It is defined
by the dynamical diffraction that takes place at large per-
fect regions of the crystal.

In order to experimentally demonstrate the systematic
errors due to the kinematical and Aufhellung effects as well
as to prove that Eq. (3) correctly takes them into account,
a polarization-dependent set of f scans had to been col-
lected. According to I^�f�, these effects can be discrimi-
nated when investigated as a function of the incident beam
polarization direction since they have different weight,
given by y

2
d and y2

p. The b parameter also depends on the
polarization direction. The simplest way to take this into
account is by replacing b with b0�rBy

2
B 1 rCy

2
C�, where

yB � k̂B 3 k̂B 3 ê,yC � k̂B 3 k̂B 3 �k̂A 3 k̂A 3 ê�,
and rB,C are proportional to the square of the structure
factor of the B and C reflections.
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To maximize the sensitivity with the polarization, the
primary reflection and x-ray energy are chosen to produce
a p�2 scattering angle. Besides the most obvious rea-
son for using such scattering geometry, which is the pos-
sibility of tuning the strength of the primary wave from
zero to its maximum value �DA� [15], it also allows a
direct measurement of the intensity ratio, R � D2

BC�D2
A,

and an adjustment of the g angle (Fig. 1). After select-
ing a nonforbidden primary reflection with Bragg angle of
p�4 and measuring reference values for DBC and DA at
x � 0 �yp � 0� and x � 90± �yp � 1�, respectively, the
amplitude of the waves, jDpj and jDdj, can be plotted as a
function of x. In general, with x in the range from 290±

to 190± (see Fig. 1), these plots show two polarizations
where jDpj � jDdj. The value of cosg defines which one
of these two polarizations has a better phase sensitivity.

The experiments were carried out in a three-axis go-
niometer mounted on top of an inclination table (x table) at
the x-ray diffraction beam line of the National Synchrotron
Light Source, Brazil. The x-table rotation axis is lined up
with the incident beam, and the inclination of the table al-
lows the adjustment of the x angle in the required range
of 290± to 190± (see Ref. [15] for more details). A GaSb
�001� crystal was chosen as a sample, the 2̄26 reflection
as the primary reflection (A reflection in Fig. 1), and the
�110� direction was taken as the reference for the f rota-
tion �f � 0�. For the wavelength of 1.2992 Å, selected by
a double-bounce Si 111 monochromator, the Bragg angle
of the 2̄26 reflection is very close to p�4. The divergences
were limited by slits and estimated as 1400 (vertical) and
2700 (horizontal).

Two three-BDs were analyzed, one that has a strong
secondary wave �R � 1.334� produced by the 3̄1̄3 1 113
reflections (B and C reflections in Fig. 1) and another
with a much weaker secondary wave �R � 0.332� from
FIG. 2. Experimental (open circles) and simulated (solid lines) f scans of the 3̄1̄3 1 113 (a) and 226 1 4̄00 (b) three-BDs as a
function of the polarization angle (x). Simulated curves were generated by Eq. (3). The improvement of the fitting is driven by the
mean-absolute deviation of the data. The best-fit values of CT and a are shown at the left-hand side of each scan, while the vertical
scale is at the right. The base line is normalized to the unit. b � 0 in (a) and b0 � 0.7 in (b) with rB � 0.039 and rC � 0.961. The
center of the curves as well as their widths (w) were optimized for each scan. Other relevant values: experimental intensity ratios,
R � 1.334 (a) and R � 0.332 (b); expected polarizations for optimizing phase sensitivity, x � 60± (a) and x � 12.5± (b); azimuthal
positions, f0 � 80.807± (out/in) (a) and f0 � 29.452± (in/out) (b); theoretical triplet phases, C

theo
T � 62± (a) and C

theo
T � 0± (b).
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the 226 1 4̄00 reflections. The latter is a very extreme
case since at x � 50.8± the 226 reflection is a polariza-
tion forbidden reflection (yd � 0� [15]. Only the Aufhel-
lung effect will be observed at this polarization. For both
three-BDs, the f scans as a function of x, the simulated
curves obtained by Eq. (3), and the respective values of
CT and a are shown in Fig. 2. The observed smooth vari-
ation of a with x reflects the instrumental dependence of
R with the x rotation of the incident x-ray optics.

In Fig. 3 there is a comparison between the triplet phases
extracted from the f scans in Fig. 2 by two different theo-
retical approaches: (i) one that assumes diffracted waves
fully coherent as in the standard 2nd-order Born approxi-
mation, Eq. (1), and (ii) the modified approach introduced
above, Eq. (3), that allows one to simulate the kinemat-
ical and Aufhellung effects onto the profiles of f scans.
In the case of the 3̄1̄3 1 113 three-BD, a polarization-
independent triplet-phase value �Cexp

T �, of 66.5�61.5±�, is
obtained by eliminating only the systematic errors due to
kinematical diffraction. As can clearly be seen, the errors
are so significant that make the standard approach useless
for phase determination. When the distortion of the pro-
file due to the positive symmetrical contribution of I^�f�
is ignored in Eq. (1), the values of CT are shifted in or-
der to compensate for the distortion. In the other case, the
226 1 4̄00 three-BD, it was also necessary to consider the
Aufhellung correction �b0 fi 0� in order to obtain a near
constant value of the triplet phase, C

exp
T � 4.5�63.5�±. It

is interesting to note that in scan No. 4, shown in Fig. 2(b)
with x � 28±, the distortion of the profile due to both ef-
fects cancel each other, i.e., I^�f� � 0, and then, both the
standard and the modified approaches provide the same
CT value.

The results presented above clearly demonstrate that it
is possible to obtain very accurate phase values from the
015501-3
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FIG. 3. Comparison of the triplet-phase angles obtained from
fitting the f scans in Fig. 2 by the standard 2nd-order Born
approximation, Eq. (1), and its modified form, Eq. (3). The
horizontal solid lines show the expected values, C

theo
T . The

scan number refers to the different polarizations where the f
scans were measured, as ordered in Fig. 2. In Eq. (3), b � 0
corrects systematic errors due to kinematical diffraction only,
while b0 fi 0 allows some corrections for the Aufhellung effect.
Data fitting with Eq. (1) is carried out by adjusting CT and
the intensity ratio (R), or equivalently, CT and a in Eq. (4).
The fit quality is exactly the same as those obtained by Eq. (3).
When b0 fi 0, no phase value can be assigned to scan number
6 (226 1 4̄00) because it contains no phase information. It is a
pure Aufhellung.

three-BD interference profiles. The modified approach for
kinematical corrections is essential to the accuracy of these
results. The attenuation of the interference term for sim-
ulating the loss of coherence, mainly due to kinematical
diffractions, is a general concept and must be considered
for most crystals. What may change from one crystal to
another is the line profile functions describing the contri-
bution of the a and b parameters in I^�f�. Aufhellung
corrections are also necessary in some cases, although its
systematic errors are minimized when the scattering plane
is close to the horizontal, i.e., x � 0.

Enhanced triplet-phase determination, with the accuracy
reported here, leads to new methods for structural study of
crystalline materials, where fine features of the structures
are probed by selecting a few suitable reflections. For in-
stance, even the small discrepancy between the theoretical,
62±, and experimental, 66.5�61.5�±, triplet-phase angles of
the 3̄1̄3 1 113 three-BD is significant for an error bar of
61.5±. In this case, it indicates that the cloud of charge due
to shared electrons in the covalent bounds increases (de-
creases) the average x-ray scattering around the Ga (Sb)
atoms. Since the Ga donates three and the Sb donates five
electrons to the cloud, and the contribution of the cloud to
the scattering at either atomic site is even, the net charge
(core 1 cloud�2) around each site is better represented by
015501-4
Sb11 and Ga21. By transferring one scattering charge unit
from the Sb to the Ga atoms, the theoretical triplet-phase
value raises to 66±.

In the content of this Letter there are three very im-
portant points that we now highlight: (i) the inclusion of
an attenuation parameter for the interference term in the
2nd-order Born approximation of the three-BD; (ii) the use
of the p�2 scattering geometry for a direct measurement
of the intensity ratio R. No previous knowledge of the
structure factor is therefore required. For other scattering
angles different from p�2, R can be obtained by simul-
taneously fitting a polarization-dependent set of f scans;
(iii) the phasing technique proposed here seems to have
the highest precision ever presented for direct measuring
reflection phases. The precision can still be improved by
using a better-conditioned incident beam and by elaborat-
ing more flexible equations for data simulation and sophis-
ticated algorithms for fitting the dataset.
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