

X-ray Imaging in Advanced Studies of Ophthalmic Diseases

Sérgio L. Morelhão & Andrea Antunes

Instituto de Física, USP (Institute of Physics, Univ. of Sao Paulo) morelhao @ if.usp.br

Ophthalmic Diseases and X-rays

Disease:

- Alterations in optical/physiological properties of ocular tissues

Ocular Tissues:

- Those responsible for processing the visible light inside the eye, such as <u>retina</u>, <u>cornea</u> and <u>crystalline</u> (eye lens)

Cataract:

- Transparency loss of the eye lens. One of the most common disease, leading cause of eye surgery (8-10 million/year)

Drugs, R&D:

- For corrective/preventive treatments new tools are required with <u>sensitivity to extended changes in the tissue</u> & <u>feasible on</u> <u>large ensembles</u>

X-ray imaging: what are the benefits?

- Short wavelength, low scattering, good resolution/penetration ratio, fast data collection (50 samples/day)

Cataract: eye lens opacity ...

Cataract

Optical/Electron Microscopy

Visible light:

- too much diffuse scattering for structural analysis of the scattering centers by naked eye
- histological procedures required
- macro scale information is lost

Multilamellar bodies as potential scattering particles... K.O. Gilliland *et al. Molecular Vision 2000*; **7**, 120 (2001)

Faculty of Veterinary Medicine, University of Sao Paulo - USP Canine lens with cataract.

Scanning Electron Microscopy

Nuclear fiber cell compaction... Christopher D. Freel *BMC Ophthalmology* **3**, 1 (2003)

Images of human cataractous lens... W.L. Jongebloed. Scanning Microscopy **12**, 653 (1998)

Optical / Electron microscopies are limited for investigating: <u>distributions of scattering center</u> and <u>density fluctuations</u> on extended tissues (cm scale/entire lenses)

Why X-rays?

X-ray can see through entire lenses:

- minimum of scattering (angular spreading $\approx \lambda/D$)
- refraction and diffusion scattering are <u>angular resolved</u> processes

Small angle

scattering

- selective mapping of:
 - density fluctuations and
 - distributions of scattering centers

Diffraction enhanced X-ray imaging (DEI)

- a) Experimental setup at X15A (NSLS).
- b) Incident beam (0),
 absorption (1),
 refraction (2), and
 diffuse scattering (3).

c) Analyzer window (acceptance angle for Bragg diffraction in the analyzer crystal)

- P: center of reflection curve (absorption)
- S: shoulder (refraction) ($\Delta I/I \sim 30\%$ per µrad)
- T: tail (diffuse scat.) $|\Delta \theta| > 5\mu rad,$ $I/I_0 < 2\%$

DEI @ LNLS (10.7KeV)

of

heir

"High contrast radiography of normal and cataractous canine lenses" A. Antunes, M.G. Hönnicke, C. Cusatis and S.L. Morelhão J. Phys. D: Appl. Phys. **38** A85-A88 (2005)

"Diffraction Enhanced X-Ray Imaging of Mammals Crystalline Lens" A. Antunes, M. G. Hönnicke, A. M. V. Safatle, C. Cusatis, P. S. Moraes Barros and S. L. Morelhão *Nucl. Instr. Meth.* B **238**, 28-31 (2005)

si (111) state of the state of the support: CNPq, Fapesp and PRP-USP.

DEI of entire lenses (@ 20 KeV)

Air

nsls

UV

Water

Med. Phys. 33, 2338 (2006)

Discovery of calcificated tissue in the eye lens (canine)

Calcificated tissues (Ca, Micro X-ray fluorescence) Refraction: $\Delta \theta = -1.2 \mu rad$

Mass absorption image

Diffuse scattering: $\Delta \theta =$ -4.5µrad

Absorption (before analyzer) Side view

Localized calcification and the partial cataract cases

Fiber cell compaction and the total cataract cases

Diffusion scattering: $-5\mu rad < \Delta\theta < -4\mu rad$

Refraction: $-2\mu rad < \Delta\theta < -1\mu rad$

White/dark contrast due to compaction of fiber cells

analyzer window

Cortical fiber-cell organization and low-density fissures

Size reduction of fiber-cells promotes compaction towards sites A and lowdensity fissures at sites B.

Classification scheme of cataract by DEI

3D configuration of lesions

- localization of calcificated tissues, i.e. nuclear/cortical
- extension of fiber compaction

Correlations to be established

- ophthalmic exams (partial/total opacity) and type of lesions
- calcification:
 - inductive agents and susceptible mammal species
- potential causes of cataract and type of lesions
- information from other techniques

Multi-disciplinary approach

- to fully understand the disease
- histological procedures; microscopic analysis
- UV and Raman spectroscopy; protein/molecular content
- X-ray fluorescence; elemental analysis

Researchers and Institutes

Dr. Andrea Antunes

- 4 years of Young Researcher fellowship, FAPESP
- to explore the multi-disciplinary aspect of the ophthalmic diseases
- Institute of Physics, Dept. Applied Physics, USP

Prof. Paulo S.M. Barros and Dr. Angélica Safatle

- Faculty of Veterinary Medicine, USP
- cataract surgery in mammals
- patient clinical records
- ophthalmic classification, i.e. extension of opacity

Dr. Maria Ines Borella

- Institute of Biomedical Sciences, USP
- histological analysis
- lab. for handling tissues (microtome)

Researchers and Institutes

Dr. Marcia Temperini

- Institute of Chemistry, USP
- Raman spectroscopy
- Laser Phys. Lett. 2, 356 (2005)

Prof. Maria Luisa de Carvalho

- University of Lisbon, Portugal
- Institute of Atomic Physics
- X-ray fluorescence

Acknowledgements

Z. Zhong, C. Parham
Brazilian agency CNPq (proc. No. 150329/2003-2 and 301617/95-3)
Research founding offices PRP and CCInt of USP,
Use of X15A beamline at the NSLS, U.S. Department of Energy No. DE-AC02-98CH10886 and by NIH grant R01 AR48292.