Universidade de São Paulo Instituto de Física

FAP5844 - Técnicas de Raios-X e de feixe iônico aplicados à análise de materiais

> Manfredo H. Tabacniks FI3-2008

Produção de Raios-X de um elemento de volume

$$dN_X = \frac{\Omega}{4\pi} \varepsilon \,\sigma_X(E) \,n(x, y) \rho_n T(z) \,dxdydz$$

Produção de Raios-X de um elemento de volume

i refere elemento químico, ou linha de raio-x do elemento;

 ρ_i densidade massa [g/cm³] do elemento i;

ρ densidade de massa do material todo ($ρ = ρ_i$ se monoelementar) $σ_x = σ_I ω.k$

$$N'_{Xi} = \frac{\Omega}{4\pi} \varepsilon_i \frac{Q}{q \cdot e \cdot \cos\alpha} \frac{\rho_i}{\rho} \frac{N_0}{A_i} \int_{E_0}^{E} \frac{\sigma_{X_i}(E') \cdot e^{-\frac{\mu_i \cos\alpha}{\rho} \frac{E'}{S(E'')}}}{S(E')} dE'$$

Inclui efeitos de eficiência e ângulo sólido de detecção Gráfico do número (*dN/dz*) de fótons **K** gerados por um feixe de prótons com energia inicial de 2,4 MeV em função da profundidade em titânio.

1. Como varia a energia do feixe em função da profundidade?

Calculation using SRIM-2006 SRIM version ---> SRIM-2008.03 Calc. date ---> agosto 24, 2008 Disk File Name = SRIM Outputs\Hydrogen in Titanium Ion = Hydrogen [1] , Mass = 1.008 amu Target Density = 4.5189E+00 g/cm3 = 5.6812E+22 atoms/cm3 ====== Target Composition ======= Atom Atom Atomic Mass Name Numb Percent Percent

Ti 22 100.00 100.00

Bragg Correction = 0.00%

Stopping Units = keV / micron

	Ion	dE/dx	dE/dx	Projected	Longitudi	nal	Latera	al
	Energy	Elec.	Nuclear	Range	Straggli	ng	Stragg.	ling
-	10.00 keV	8.673E+01	1.283E+00	935 A	489	A	429	 A
	11.00 keV	9.067E+01	1.222E+00	1016 A	509	A	451	А
-			-	20.25	1 4 2		0 1 0	
	2.00 MeV	4.112E+U1	2.619E-02	30.35 um	1.43	um	2.10	um
	2.25 MeV	3.8108+01	2.368E-UZ	36.60 um	1./8	um	2.49	um
	2.40 MeV	3.658E+01	2.241E-02	40.58 um	1.92	um	2.74	um
-	Multiplu Cto			apping Upi				
	Multiply Sto	pping by		opping uni	- -			
	1.0000E-01		eV / A	ngstrom				
	1.0000E+00		keV / m	icron				
	2.2130E-03		keV / (*	ug/cm2)				
	1.7602E-01		eV / (1E15 atoms	/cm2)			
	1.3649E-01		L.S.S.	reduced un	its			
								_
	(C) 1001 100	0 1002 1000	2000 by T			710	 ~low	-
	() 1904,190	<i>フ</i> , エフフム , エフフO	, ZUUO DY U.	r. Dielsac	r anu u.r.	2166	JTET	

1. Como varia a energia do feixe em função da profundidade?

$$\begin{split} E(z) &= A + B1^*z + B2^*z^2 + B3^*z^3 + B4^*z^4 + \\ B5^*z^5 + B6^*z^6 + B7^*z^7 \end{split}$$

В	Value	Erro
A	1.17	0.93
B1	183.3	2.3
B2	-19.2	1.2
B3	1.82	0.27
B4	-0.109	0.028
B5	0.0040	0.0016
B6	-8.6E-5	5.0E-5
B7	10.1E-7	8.1E-7

- 1. Determinar $dE/dz \times E$ com SR do SRIM
- 2. Inverter: $1/S \times E$
- 3. Integrar e obter z(E)
- 4. Inverter e ajustar polinômio E(z)

2. Como depende a seção de choque de ionização com a energia do feixe?

Há várias possibilidades na literatura. A mais simples é o ajuste semiempírico de Johansson e Johansson: *Nucl. Instr. And Meth.*, **137**, 476, 1976. Existe um ajuste semelhante e um pouco mais preciso, para cada elemento da tabela periódica, por Campbell e usado no programa GUPIX .

O esquema JJ
$$\ln(\sigma u_i^2) = \sum_{n=0}^5 b_n x^n$$
$$x = \ln(E_p / \lambda u_i)$$

 u_i é a energia de ionização da camada E_p é a energia do próton (eV) σ em 10⁻¹⁴ cm² $\lambda = m_p/m_e = 1836.1514$ $u_L = \frac{1}{4}(u_{L1} + u_{L2} + 2u_{L3})$

Coeficientes do polinômio para o cálculo da seção de choque de ionização da camada K e L. Camada *b0 b1 b2 b*3 *b4 b5* Κ 2.0471 -0.0065906 -0.47448 0.09919 0.046063 0.0060853 0.12613x10-2 L 3.6082 0.37123 -0.36971 -0.78593x10-4 0.25063x10-2

Seção de choque de ionização do Titânio sob feixe de prótons com 2,4 MeV Esquema JJ.

Seção de choque de produção de raios-X

$$\sigma_{X} = \sigma_{I} \omega k$$

 ω rendimento fluorescente

k probabilidade da linha no grupo

$$\left(\frac{\omega_K}{1-\omega_K}\right)^{\frac{1}{4}} = \sum_{i=0}^3 B_i Z^i$$
$$\left(\frac{\overline{\omega}_L}{1-\overline{\omega}_L}\right)^{\frac{1}{4}} = \sum_{i=0}^3 B_i Z^i$$

Coefic do ren	Coeficientes do polinômio para cálculo do rendimento fluorescente das camadas K e L.								
	Κ	L							
B_0	(3.70 ± 0.52) x 10-2	0.17765							
B₁	(3.112 ± 0.044) x 10-2	2.98937 x 10-3							
B_2	(5.44 ± 0.11) x 10-5	8.91297 x 10-5							
B_3	-(1.25 ± 0.07) x 10-6	-2.67184 x 10-7							

Seção de choque de produção de raios-X do Titânio sob feixe de prótons com 2,4 MeV Esquema JJ.

Número (*dn/dz*) de **fótons Ka** que chega num detector função da profundidade (*z*) numa amostra de Titânio para incidência normal

$$\Omega = 10^{-3} \text{ sr}$$

$$\varepsilon = 1$$

$$N'_{Xi} = \frac{\Omega}{4\pi} \varepsilon_i \frac{Q}{q \cdot e \cdot \cos \alpha} \frac{\rho_i}{\rho} \frac{N_0}{A_i} \int_{E_0}^{E} \frac{\sigma_{X_i}(E') \cdot e^{-\frac{\mu_i \cos \alpha}{\rho} \int_{E_0}^{E'} \frac{dE''}{S(E'')}}{S(E')} dE'$$
Prótons com 2,4 MeV
Incidência normal

$$\frac{dN'_{Xi}}{dz} = \frac{\Omega}{4\pi} \varepsilon_i \frac{Q}{q \cdot e \cdot \cos \alpha} \frac{\rho_i N_0}{A_i} \sigma_I (E(z)) \omega k e^{-\frac{\mu_i z \cos \alpha}{\rho sen\theta}}$$

Opção 1: Determinar μ_i usando XCOM. Opção 2: Usar "utilities" do QXAS.

QXAS

 $E_{K\alpha}(Ti) = 4.508 \,\mathrm{keV}$ μ (4.508keV > Ti) = 112 cm² / g $abs(z) = e^{-\left(\frac{112}{4,5}\right)\frac{z}{0,707}}$ $abs(z) = e^{-\frac{\mu_i z \cos \alpha}{\rho sen \theta}}$ 1.2 Incidência normal: $\alpha = 0$ 1 0.8 Supondo detecção em 45° Absorção 0.6 sen 45 = 0,707 0.4 $\rho(Ti) = 4.5 \,\text{g/cm}^3$ 0.2 0 0.02 0 0.005 0.01 0.015 0.025 z (cm)

Lei de escalas (Teoria do encontro binário)

$$\sigma_{A,Z}(E) = Z^2 \cdot \sigma_{1,1}(E/A)$$

$$\sigma_{4,2}(9,6) = 2^2 \cdot \sigma_{1,1}(9,6/4)$$

$$\sigma_{4,2}(9,6) = 4.\sigma_{1,1}(2,4)$$

A redução de um espectro de raios X

Espectro PIXE do padrão IAEA-356 (sedimento marinho) diluído 33% em ácido bórico. A curva inferior é a componente do fundo contínuo do ácido bórico puro.

Espectro multielementar de uma amostra com *k* elementos obtido com um detetor tipo Si(Li) e linhas K, L e M pode ser modelado com um somatório de espectros característicos elementares somados a um fundo contínuo

Um espectro multielementar de uma amostra com *k* elementos obtido com um detetor tipo Si(Li) e linhas K, L e M pode ser modelado com um somatório de espectros característicos elementares somados a um fundo contínuo.

$$N(\kappa) = \left[\sum_{n} \alpha_{n} \cdot F_{n}(\kappa) + A_{0} \cdot BG(\kappa)\right] + SUM(\kappa) + ESC(\kappa)$$
principals picos escape
principals picos soma
fundo contínuo

n espectros independentes

$$N(\kappa) = \left[\sum_{n} \alpha_{n} \cdot F_{n}(\kappa) + A_{0} \cdot BG(\kappa)\right] + SUM(\kappa) + ESC(\kappa)$$

$$F_r(\kappa) = \sum_i \beta_i \cdot G(E_i(\kappa), \Gamma_i(\kappa))$$

Função gaussiana (ou similar assimétrica) centrada em E_i com largura Γ

Um elemento pode ter mais que um grupo de espectros "independentes" O espectro L tem 3 grupos: L1, L2 e L3 calibração energia x canal $E_i = A_1 + A_2 \cdot \kappa$

calibração resolução x energia ${\Gamma_i}^2 = A_3^2 + A_4 \cdot E_i$

Parâmetros alteram a gaussina de forma não linear: ajuste iterativo

O programa AXIL (QXAS) para ajuste não linear de espectros de raios-x

http://www.iaea.or.at/programmes/ripc/physics/faznic/winqxas.htm

Condições experimentais

Current parameter file: * Select parameter file Características Set detector characteristics * Cr+ do detector Sp Beryllium window (micron) : 7.620000 Gold layer (micron) : 0.020000 Detector type Si(Li) -Detector dead layer (micron) : 0.300000 Detector active depth (mm) : 3.000000 Pulse pileup resolution time (micro sec) 2.000 *

Condições experimentais

Absorvedor de raios-X. Influi apenas na razão de intensidade das linhas.

Em PIXE também se usa um tipo de absorvedor chamado "funny filter". É um filtro com furo. O objetivo é modelar a curva de absorção de forma que não tenda a $-\infty$ quando a energia tende à zero.

Parâmetros de análise

Current parameter file: C:\AXIL\TESTE.INP

* Select parameter file * Create new parameter file * Specify spectrum analysis parameters * Specify experimental parameters

Current parameter file: C:\AXIL\TESTE.INP

* Select parameter file

*¦Specify spectrum analysis parameters

- * Background parameters
- I* Calibration parameters
- +* Fitting control parameters
- * Sample absorption

Um espectro PIXE varia sobre até 6 ordens de grandeza. O modelo de fundo tem que acompanhar essa variação. Para isso usa-se um fundo exponencial de um polinômio. Seu uso exige paciência. Um fundo simples e é o filtro, que calcula inúmeras médias móveis do espectro e com isso alisa os picos: o que sobra é o fundo. Aumentar o número de iterações abaixa o fundo.

Current	parameter file: C:\AXIL\TESTE.INP
Select	parameter file
Sp 🕂	Specify exponential background parameters
*	Order of linear polynomial :] Order of exponential polynomial : 4
* Sa	The higher order terms of the Exponential polynomial can be kept constant : Number of constant terms : Ø
	Parameter 1: 0.00000 Parameter 5: 0.00000 Parameter 2: 0.00000 Parameter 6: 0.00000
	Parameter 3: 0.00000 Parameter 7: 0.00000 Parameter 4: 0.00000 Parameter 8: 0.00000
	Initialize parameters automatically (y/n): y Energy near background maximum (keV): 0.00000

Parâmetros de análise

Curre	ent parameter fil	e: C:\AXIL\TE	STE.INP	
E Sele	ect parameter fil	e		
	S	pecify calibr	ation constants	
Sp	Enguna on Liburti		TERO + Chappel + Co	TN
*	Resolution calib	ration : FWHM	$^{2} = NOISE^{2} + 2.35$	* FANO * E
! * !				
*	ZERO (eU):	0.00000	NOISE (eV) :	120.000
*	D_ZERO (eU) :	100.000	D_NOISE(eU) :	40.0000
+	GAIN (eV/ch):	20.0000	FANO-factor :	0.11400
	D COTHE IL	0 00000	D DANO .	0 00000

Estes são os parâmetros de calibração de energia e resolução. Controla-se o ajuste "liberando" ou "amarrando" os desvios dos parâmetros: D_ZERO, D_GAIN, D_NOISE e D_FANO. Em espectros de poucos picos especialmente se concentrados numa região, o modelo pode correr os parâmetros de calibração. Nesse caso, ou quando os parâmetros são bem conhecidos, convém reduzir os D_s para algo em torno de 1% ou menos, evitando assim que o modelo de ajuste seja fisicamente irreal.

```
$FIT ROI:
Os arquivos do QXAS
                                                             80 600
                                                          $PEAK:
                                                              4
                                                                  1
                                                                 14 10001
                                                              1
                                                              1.7400
                                                                       1.0000
                                                                                1
                                                                 16 10001
                                                              2
          parametros.inp
                                       elementos
                                                              2.3070
                                                                        .9419
                                                                                1
                                                              2.4640
                                                                        .0581
                                                                                3
                                              para
                                                                 20 10001
                                                              2
                                          análise
                                                              3.6910
                                                                        .8883
                                                                                1
                                                              4.0130
                                                                        .1117
                                                                                3
                                                                 26 10001
                                                              2
                                                              6.3990
                                                                        .8816
                                                                                1
                                                              7.0590
                                                                        .1184
                                                                                3
                                                          $SCATTER:
                                                               .0000
                                                                        .0000
                                                               .0000
                                                                       .0000
                                                               .0000
                                                                       .0000 250
                                                          $SPEC CAL:
                                       calibração
                                                          -2.2806E+002 1.9714E+001 1.0800E+002 3.6100E-002
                                                          1.0000E+002 2.0000E+000 4.0000E+001 5.0000E-002
                                                          $BACK:
                                                          204
                                            fundo
                                                          0 0.000000 200 1
                                                          0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000
                                                          0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000
                                                          $FIT CON:
                                       condições
                                                          0.000000 20 0.100000 1
                                  experimentais
                                                          $EX_COND:
                                                           1
                                                          45.000000 45.000000 2400.000000
                                                          $DETEC:
                                         detector
                                                          7.6200E-004 2.0000E-006 3.0000E-005 3.0000E-001
                                                          14 2.0000E+000
                                                          $DET_PATH:
                                                          0 0.0000E+000 2.0000E+000
```

Os arquivos do QXAS

espectro.spe

<pre>\$SPEC_ID: zr02 = 2% \$MEAS_TIM: 600 \$DATA:</pre>	sco2	remover brancos à direita	à						
0	102	3							
600	584	31	1	07	15	32	0	0	1024
0	0	0	0	0	0	0	0	1	1
0	13	85	337	783	1381	1737	1912	1795	1575
1353	1329	1030	861	721	55 9	461	387	339	328
301	312	284	288	281	266	294	286	297	274
289	285	254	294	271	238	251	197	212	199
226	220	247	221	219	228	236	200	228	202
193	209	180	207	229	198	201	175	207	219
225	246	270	263	323	315	361	337	348	414
498	618	803	982	1157	1171	1364	1462	1755	2264
2848	3234	3397	3265	3073	2846	2826	3482	5885	12183
24647	45706	72309	98021	114557	117995	109471	96379	82432	69027
55697	43051	31866	22693	15140	9810	5704	3408	2065	1269
980	663	596	588	658	851	975	1153	1196	1094

Os arquivos do QXAS

espectro.out

+ AXIL IE Spectru +	AXIL IBM-PC V3.00 01-31-2007 16:28:42 Spectrum: B3147.SPE 600.s									
+ Fitting 	g Region: char	nnels 150 -1000;	ChiSqr	= 2.8						
Line	Ener. (KeV)	Peak area	st.dev.	Chi_sq						
Ca-Ka	3.691	375. ñ	18 .	1.33						
Sc-Ka	4.089	189407. ñ	177.	7.47						
Ti-Ka	4.509	4373. ñ	50.	16.56						
V -Ka	4.950	-407. ñ	10.	4.11						
Fe-Ka	6.399	174. ñ	8.	1.95						
Zr-Ka	15.746	37870. ñ	76.	1.14						
Hf-La	7.894	2690. ñ	15.	15.38						

Saída tipo "breaf" (note que tanto full como breaf usam a terminação .out)

ideal para cálculos posteriores

\$SPEC	_ID:					
zro2	+ 13%	sco2				
\$MEAS	TIM:					
600						
	0	0	0	0		
\$PEAK	s:					
	7					
20	1	3.691	375.		18.	1.33
21	1	4.089	189407.		177.	7.47
22	1	4.509	4373.		50.	16.56
23	1	4.950	-407.		10.	4.11
26	1	6.399	174.		8.	1.95
40	1	15.746	37870.		76.	1.14
72	2	7.894	2690.		15.	15.38

espectro.out tipo "full"

+						
AXIL IBM-F	PC V3.00		:	12-1	7-2005	16:58:03
Spectrum:	B630.SPE					200.s
+						
+ Fitting De	gion, char		800		iteratio	
Fitting Re	- 4 6	lneis 45 -	800 	о 2	lambda	
	- 4.0		.ge = .0			- 1.6-07
		CALIBRATI	ON DATA			
	Ir	itial estim	ate		Final est	timate
ZERO (eV)	i	-141.4 ñ	.5		-141.4 ñ	.3
GAIN (eV/c	h)	19.486 ñ	.100		19.486 ñ	.004
det NOISE (eV)	117.6 ñ	1.0		117.6 ñ	.2
FANO facto	or	.028 ñ	.000		.028 ñ	.000
+						
+						
		PEAK	DATA			
	E(KeV)	rel. int	peak ar	 ea	st. dev	chi-sa
	chan#	fwhm (eV)	back	ar	ac. dev	tot abe
				91 		
1 Al-K			65467	6. ñ	i 812.	
KA1	1.487	1.00000	65467	6. ñ	i 814.	21.2
	83.563	121.37	318	6.		4.33E-05
2 Fe-K			170	9. ñ	42.	
KA1	6.399	.87732	149	9. ñ	i 38.	4.5
1 101	335.635	132.94	3	9. 0 =		8.53E-01
	7.059	134 42	21	о. п 9		3.0 8 895-01
1	509.505	131.12	2	••		0.096-01
3 Au-L1			:	9. ñ	i 9.	
L1M3	11.610	.39333		4. ñ	i 4.	1.4
i	603.051	144.21		7.		9.74E-01
L1M2	11.205	.33863		3. ñ	i 4.	.7
	582.268	143.37		з.		9.71E-01
L1N3	13.809	.11133	:	1. ñ	i 1.	.4
	715.899	148.71		7. ^		9.78E-01
	13.710	.08815 148 51		0. n 1	u 0.	.3 9 79 - 01
I I 1.103	14 201	03574		⊥. ∩ ≈	, n	0.79E-01
	740.634	149.67		o. 1		9.80E-01
L1M5	12.147	.01704		0. fi	i 1.	.4
	630.609	145.32	:	1.		9.70E-01
L1M4	12.062	.01135		0. fi	i 1.	.7
	626.247	145.14		2.		9.70E-01
L1N5	14.020	.00272	:	2. ñ	i 2.	.0
	726.727	149.13	1	8.		9.79E-01
L1N4	13.999	.00171		1. ñ	i 1.	.0
1	725.649	149.09		1.		9.79E-01
4 Au - T. 2			1.2	a ÷	12	
1 100 02			12	.		
1						

4 Au-L2			128.	ñ 13.	
L2M4	11.442	.78883	101.	ñ 10.	1.1
	594.430	143.86	6.		9.73E-01
L2N4	13.382	.16499	21.	ñ 2.	• •
	693.986	147.84	1.		9.77E-01
L2M1	10.308	.02136	з.	ñ 2.	.4
	536.236	141.48	з.		9.63E-01
L2N1	12.974	.00561	0.	ñ 8.	.:
	673.049	147.02	2.		9.75E-01
L204	13.730	.01730	2.	ñ 0.	• 3
	711.845	148.55	1.		9.79E-01
L201	13.626	.00111	0.	ñ 7.	• 3
	706.508	148.34	5.		9.79E-01
L2M3	10.992	.00080	0.	ñ 0.	- 2
	571.337	142.92	0.		9.69E-01
			485	~ ~~	
5 AU-LS	0 716	60010	4/5.	n 23.	
LISMO	9.716	140 22	332.	n 1/.	1.1
	505.856	140.22	••	~ ~	9.566-01
L3M4	9.628	.07941	38.	n 3.	1.1
T 2375	501.340	12005	8.	<i>~</i> 4	9.54E-01
LIJND	11.565	.13995		n 4.	0 727 01
T 2374	11 567	144.10	/.	<i>~</i> >	9./3E-01
L3N4	11.567	.01555	/.	n 3.	0 737 0
	600.845	144.12	/.	~ .	9./3E-0.
L3MI	8.494	.03843	18.	n 4.	2.5
7 2111	443.140	137.58	12.	ະ າ	9.346-0.
LINI	11.160	142 27	5.	n 2.	0 707 0
T 201	579.958	143.27	2.	<i>~</i> ^	9.70E-0.
1301	612 266	144 63	0. ¢	n 2.	0 75E 07
T 205	11 016	144.03	0.	<i>~</i> 0	9.756-0.
1303	618.755	144.84	4.	. 2.	9.76E-0
6 Au-M			8683.	ñ 119.	
м1	2.120	.53159	4616.	ñ 93.	3.2
	116.047	122.92	4762.		1.92E-0
M2	2.200	.46841	4067.	ñ 88.	3.9
	120.153	123.12	4735.		2.82E-0
7 (70.01			1505	<i>2</i> 71	
/ GRUI	2 425	1 00000	1525.	11 /1. ~ 07	10
	132 212	123 69	4400	II 97.	E 36E-0
	132.212	125.05	4400.		0.305-0.
8 GR02			3433.	ñ 79.	
	2.766	1.00000	3433.	ñ 98.	54.
	149.198	124.49	3360.		1.47E-0
9 Pile_up			7847.	ñ 103.	
	2.974	.95576	7500.	ñ 111.	89.
	159.872	124.99	2523.		2.14E-0
	3.644	.02535	199.	ñ 27.	3.
	194.280	126.58	745.		4.25E-0
	4.253	.01004	79.	ñ 18.	2.
	225.508	128.02	336.		5.84E-0
	3.922	.00445	35.	ñ 22.	1.
	208.522	127.24	502.		5.03E-0
	7.886	.00440	35.	ñ 4.	3.
	411.945	136.25	19.		9.19E-0

 $n_i = Q \cdot r_i \cdot (\rho_n \cdot \ell)$

$$N_i = Q \cdot r_i \cdot F_i \cdot \frac{\rho_n}{\rho}$$

↗

 $R_i = r_i \cdot F_i$

CLARA

🔅 X-ray yield cal	c										
Geometry		is,	Calc mode-			C Stopping P	ower model —				
Alpha - (deg)	- 49	geom. factor	Initial er	ergy - keV:	1100	C Ziegler	(1985)				
Theta - (deg)	: 7!	5 0.7321	C Thin target								
interaction poin		Je	C Final en	Final energy - keV							
			Effect final	energy attenua	tion	- Fluorescense yield model					
7		6 °	2	1/10 - [%]:	1	G Bamby	nek				
proton	a	photon		h - (cm):	2.520E-03	C WL mé	dio				
- Line of interest	9777 - 14 			rho * t	t	- Matrix com	nosition				
	NIG222	1.000		[g/cm2]	(cm)	madix com	DOSIGOTI	1.1			
Z Symu	Name	Line	Photon:	3.346E-03	2.609E-03	4	mass * 2 2220	_			
13 AI	Aluminum	Ka1 📩	Proton:	4.570E-03	3.564E-03	5	2.6233 14.0724				
photon e mi/rh	nergy - (eV): 10 - (cm2/g):	1486.7 1.377E+03	Integral step)	100	8 83.3037 Elements: 3 Density of bulk: 1.2822					
Thin target results		p				g/cm3					
* Proton *	Omega (Z)	b (Z)	Sigma K		Sigma X						
keV	Bambynek	Ka	(cm2)	<=: ·	(cm2)						
		l'						-			
Results	·	22. 72.				1					
final energy	h	photon t	proton t	rho*t	1/10	Integral	1222	Integral X			
keV	(cm)	(cm)	(cm)	(g/cm2)	%	(g)	142	(g)			
			x:	vitx: in-a		7235	362				
	wo	10		actor							
	Cale		Integral ×	/ Sigma X	The second se	Log res	ults				
	<u>Care</u>				(g/cm2)						
			-			ę.					

CLARA

**	atrix	composi	tion											
- Ma	in mat	rix						Seco	ndary	matrix				
Ác	bóric	0				-								•
	Z	Symb	Name	Mass	E	mass %	-10		Z	Symb	Name	Mass	E	mass %
	1	1 H	Hydrogen	1.0079	2	2.6239		1	6					0.0000 *
	2	5 B	Boron	10.811	1	14.0724		2	į					0.0000
	3	80	Oxygen	15.9994	4	83.3037		3	į.					0.0000
	4					0.0000		4	į.					0.0000
	5	l l				0.0000		5	į.					0.0000
	6	l l				0.0000		6	į					0.0000
	7					0.0000		7	į					0.0000
	B					0.0000		8	į					0.0000
	9					0.0000		9	į					0.0000
1	D	- 1				0.0000	2.	10						0.0000 -
1			· · · · ·			ŀ		4						•
			Main m	atrix concentratic	on (%):	100.0000		Ŭ			Secondary	matrix concentra	tion (%):	0
	1	Density - (g	j/cm3):	1.2822	1	1.2822		Į.	De	ensity - (g/	cm3):	0.0000	0	0.0000

ABURAYA, Jim Heiji; ADDED, Nemitala; TABACNIKS, Manfredo Harri; RIZZUTTO, Marcia de Almeida; BARBOSA, Marcel Dupret Lopes. X-ray production yield in standardized thick target PIXE. *Nuclear Instruments and Methods in Physics Research B - Beam Interactions With Materials and Atoms*, v. **249**, p. 792-795, 2006.