Instituto de Física - USP FGE0213 - Laboratório de Física III - LabFlex

Aula 10 - (Exp 2.6) - Filtro de Wien

Juntando as partes

Manfredo H. Tabacniks Alexandre Suaide outubro 2007 Atenção.

A notação algébrica neste texto foi revista para manter a coerência nas deduções. Podem haver diferenças em relação aos textos anteriores.

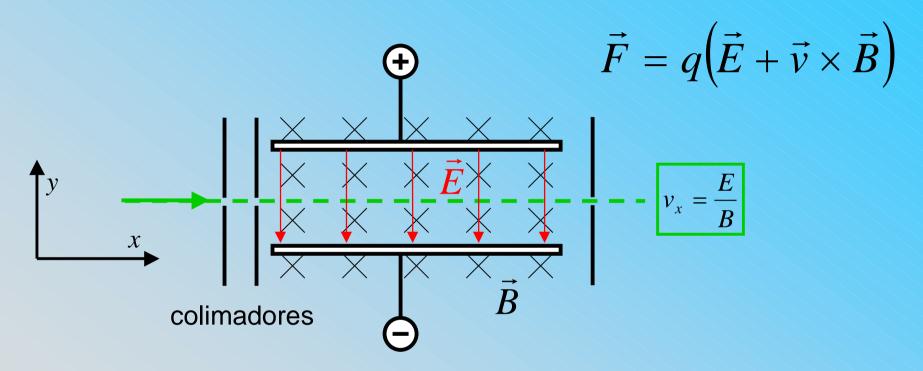
Filtro de Wien

Resumo do experimento

- Aula 2.1 Enteder o campo elétrico. Medir o campo elétrico gerado e comparar com previsões teóricas. Quão próximo está o experimento de uma situação de campo ideal (uniforme)
- Aula 2.2 Entender a geração das partículas (elétrons) e como elas se movimentam no campo elétrico estudado na aula anterior.
- Aula 2.3 Modelo do tubo de raios Catódicos. Medida do campo de fluxo magnético local
- Aula 2.4 Fluxo magnético entre duas bobinas coaxiais.
- Aula 2.5 Fluxo magnético efetivo entre duas bobinas coaxiais.
- Aula 2.6 Movimento das partículas no campo EM. Resolução do filtro de Wien
- Aulas 2.7 Aplicações. Relatório.

Objetivos

Estudar e modelar um filtro de velocidades ExB (Filtro de Wien)



- Modelar o campo elétrico entre 2 placas de um osciloscópio
- Modelar o fluxo magnético gerado por duas bobinas externas
- Construir e calibrar um seletor de velocidades

Movimento de uma partícula em um seletor de velocidades

Força resultante

$$F_{y} = q(v_{x}B - E)$$

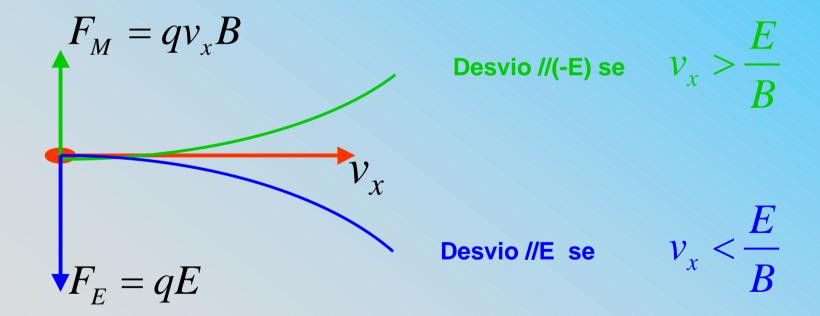
Partícula não sofre desvio se



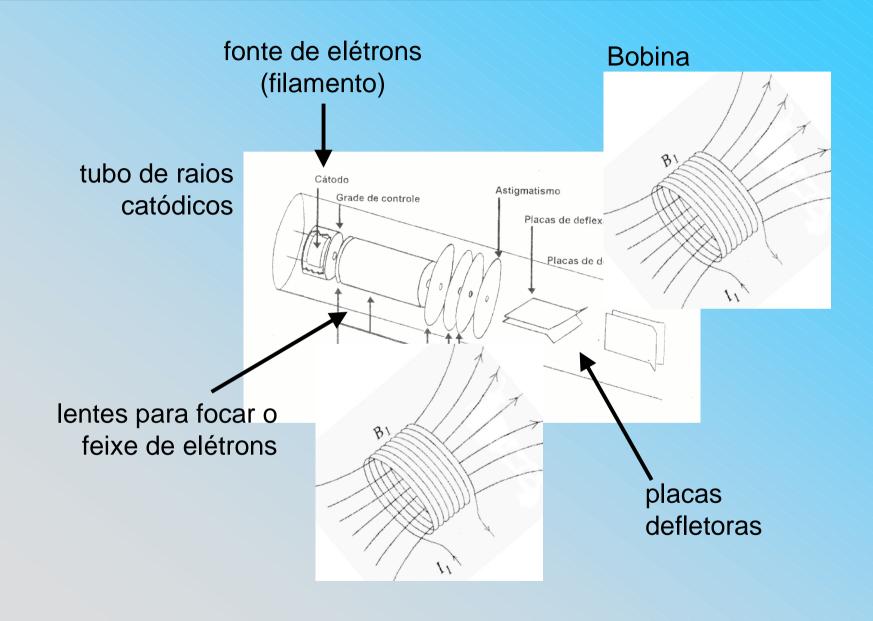
Movimento de uma partícula em um seletor de velocidades

Condição para não desviar

$$F = 0 \Rightarrow v_x = \frac{E}{B}$$



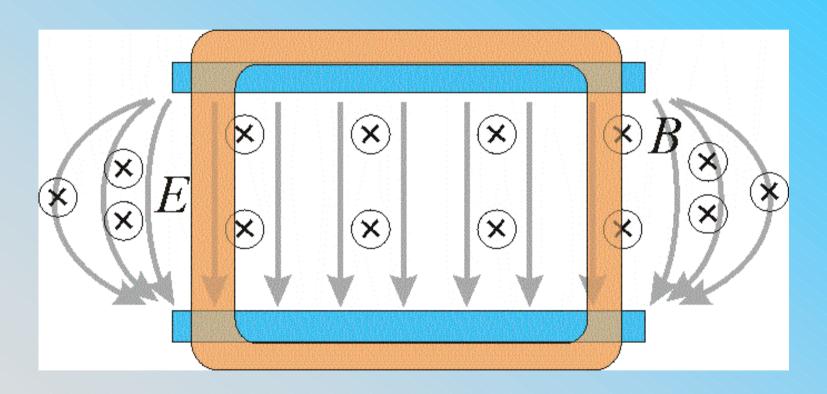
Seletor de velocidades usando um tubo de raios catódicos

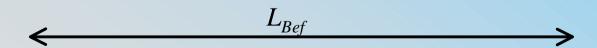


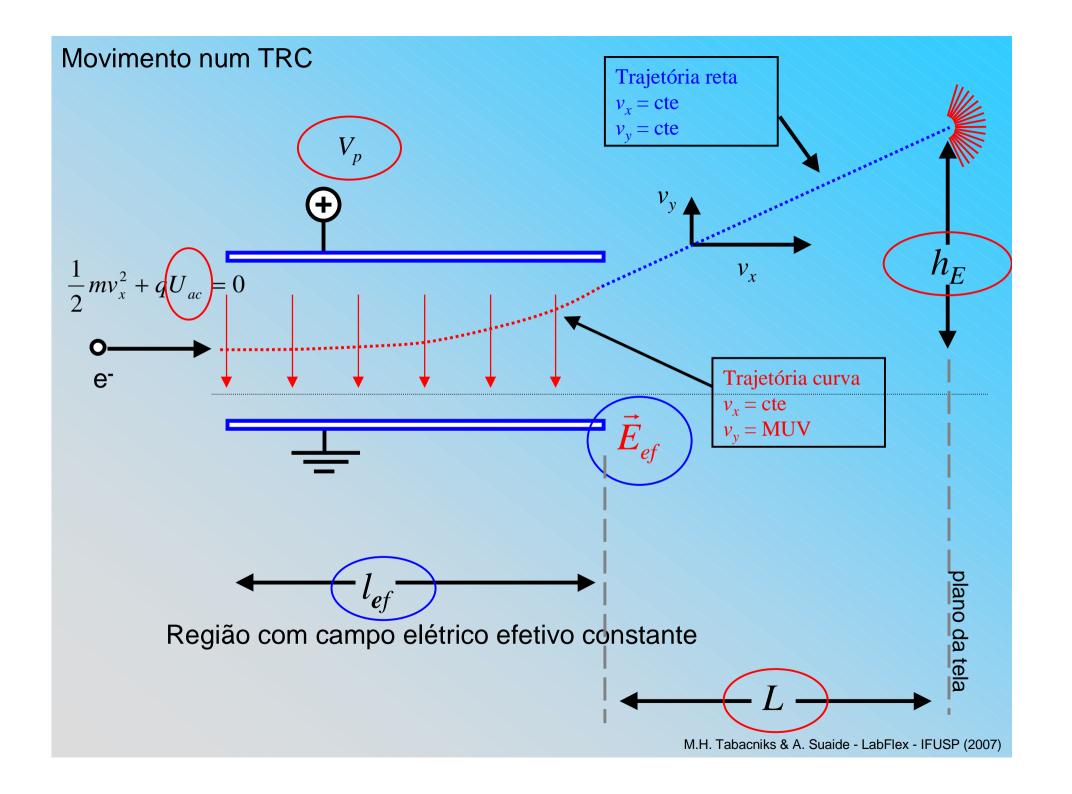
Seletor de velocidades usando um tubo de raios catódicos

Campos excedem a região das placas e das bobinas:

→ comprimento efetivo







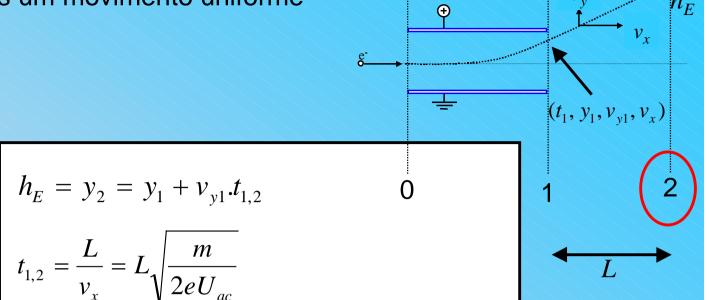
Movimento num TRC MRU $y_1 = \frac{1}{2}at^2 = \frac{1}{2}\frac{eV_p}{m.d_{ef}}\frac{ml_{ef}^2}{2eU_{ac}}$ $v_{y1} = a.t = \frac{e.V_p}{m.d_{ef}} l_{ef} \sqrt{\frac{m}{2eU_{ac}}}$ Região com campo elétrico efetivo constante M.H. Tabacniks & A. Suaide - LabFlex - IFUSP (2007)

Da placa à tela temos um movimento uniforme

$$y_1 = \frac{1}{2} \frac{l_{ef}^2}{d_{ef}} \frac{V_p}{2U_{ac}}$$

$$v_{y1} = \sqrt{\frac{e}{m}} \frac{l_{ef}}{d_{ef}} \frac{V_p}{\sqrt{2U_{ac}}}$$

$$v_x = \sqrt{\frac{2eU_{ac}}{m}}$$



$$h_{E} = \frac{1}{2} \frac{l_{ef}^{2}}{d_{ef}} \frac{V_{p}}{2U_{ac}} + \frac{eV_{p}}{md_{ef}} l_{ef} \sqrt{\frac{m}{2eU_{ac}}} L \sqrt{\frac{m}{2eU_{ac}}}$$

$$h_E = \frac{l_{ef}}{2d_{ef}} \frac{V_p}{U_{ac}} \left(\frac{l_{ef}}{2} + L \right)$$

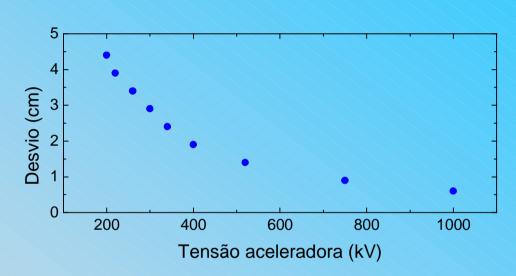
Função de **l**_{ef} e **d**_{ef}

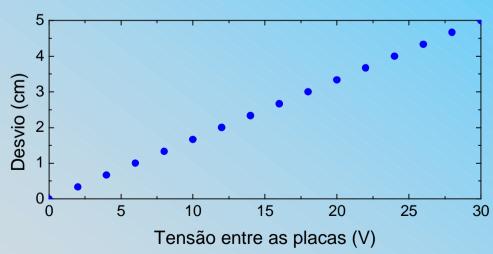
Estudo do campo elétrico

Medidas experimentais indicaram que, dentro da precisão experimental, podemos aproximar o campo para uma configuração ideal

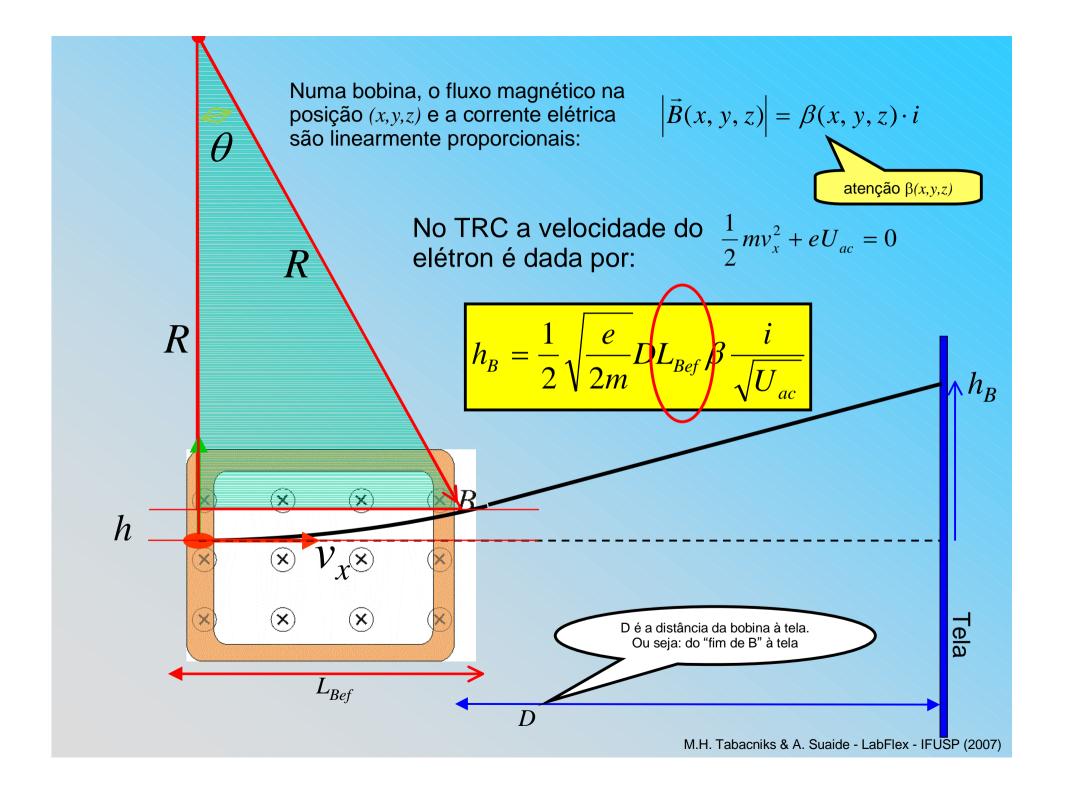
$$h_E = \frac{l_{ef}}{2d_{ef}} \frac{V_p}{U_{ac}} \underbrace{\begin{pmatrix} l_{ef} \\ 2 \end{pmatrix}} + L$$

Obtivemos o tamanho e a distância efetiva das placas





Campo axial e transversal e o sistema de referência transversal (y) longitudinal ou axial (z) (x)



Desvio no campo elétrico fornece d_{ef} e l_{ef}

$$h_E = rac{l_{ef}}{2d_{ef}} rac{V_p}{U_{ac}} \left(rac{l_{ef}}{2} + L
ight)$$

cuidado com a definição dos parâmetros, especialmente D, L e β

Desvio no campo de fluxo magnético fornece β e L_{Bef}

$$h_{B} = \frac{1}{2} \sqrt{\frac{e}{2m}} DL_{Bef} \beta \frac{i}{\sqrt{U_{ac}}}$$

Sabemos modelar o filtro de Wien dados: U_{ac} , V_p , i

$$v_{x} = \frac{|E|}{|B|}$$

$$\sqrt{\frac{2eU_{ac}}{m}} = \frac{V_p}{d_{ef}} \frac{1}{\beta . i}$$

Um pouco de álgebra

Fazendo
$$h_E = h_B$$

$$\begin{cases} h_E = \frac{l_{ef}}{2d_{ef}} \frac{V_p}{U_{ac}} \left(\frac{l_{ef}}{2} + L \right) \\ h_B = \frac{1}{2} \sqrt{\frac{e}{2m}} DL_{Bef} \beta \frac{i}{\sqrt{U_{ac}}} \end{cases}$$

$$\frac{l_{ef}}{2d_{ef}} \frac{V_p}{U_{ac}} \left(\frac{l_{ef}}{2} + L \right) = \frac{1}{2} \sqrt{\frac{e}{2m}} DL_{Bef} \beta \frac{i}{\sqrt{U_{ac}}}$$

e lembrando que:

$$E = \frac{V_p}{d_{ef}}$$

$$B = \beta i$$

$$x = \sqrt{\frac{2eU_{ac}}{m}}$$

$$v_x = \frac{E}{R}$$

$$l_{ef} E(l_{ef} + 2L) = \sqrt{\frac{2U_{ac} e}{m}} DL_{Bef} B$$

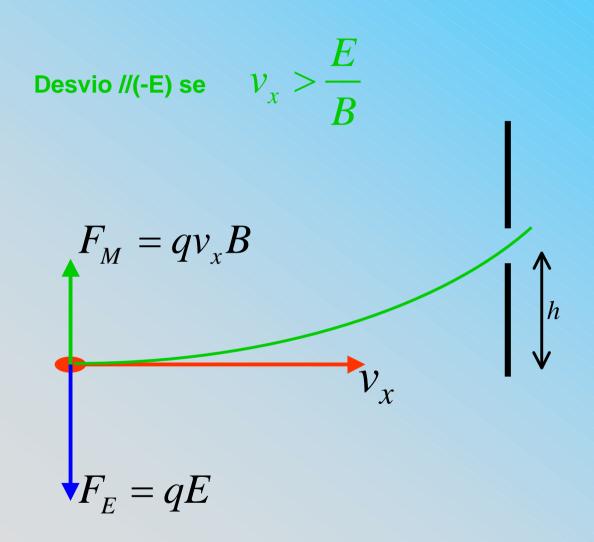
$$l_{ef} V_{\chi}(l_{ef} + 2L) = V_{\chi} DL_{Bef}$$

$$k = \frac{l_{ef} (l_{ef} + 2L)}{DL_{Bef}} = 1$$

Essa é uma forma de testar nosso modelo. Com os valores de $l_{\it ef}$ L, D e

Com os valores de l_{ef} L, D k L_{Bef} , calcula-se k, a ser comparado com 1.

O filtro de Wien como um espectrômetro de massas



O filtro de Wien pode ser usado como um espectrômetro de massas:

Acrescentando um par de fendas e resolvendo o modelo para um dado "h"

Para um dado "h" e U_{ac} , há infinitos V_p e i

Desde que a razão $V_p/i = cte$

O filtro de Wien como um espectrômetro de massas

$$v_x = \frac{|E|}{|B|}$$
 fornece... $\sqrt{\frac{2eU_{ac}}{m}} = \frac{V_p}{d_{ef}} \frac{1}{\beta . i}$

$$h \neq 0$$
 fornece outra relação .. $v_x = \alpha \frac{V_p}{i}$

Resolução de um espectrômetro é a capacidade de discriminar sinais próximos

Para um dado h, portanto V_p/i , qual o U_{ac} que maximiza a sensibilidade do espectrômetro?

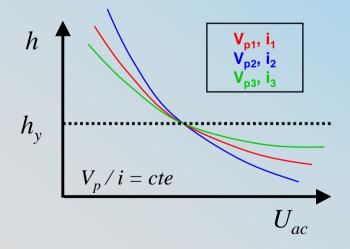
Para um dado h, portanto V_p/i , qual o U_{ac} que maximiza a sensibilidade do espectrômetro?

$$h = 0$$

$$\sqrt{\frac{2eU_{ac}}{m}} = \frac{V_p}{d_{ef}} \frac{1}{\beta . i}$$

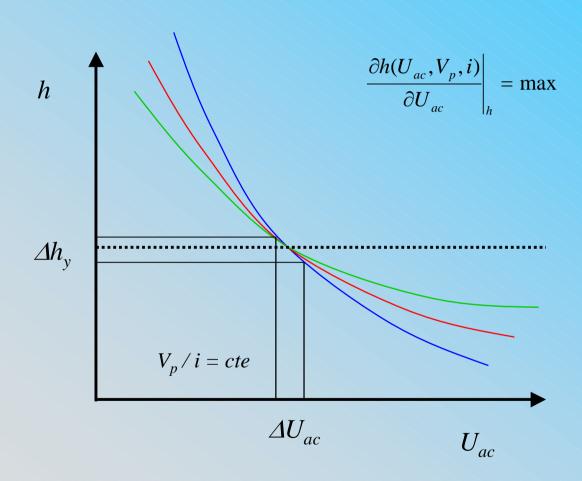
$$h \neq 0$$

$$v_x = \alpha \frac{V_p}{i}$$



$$\left. \frac{\partial h(U_{ac}, V_{p}, i)}{\partial U_{ac}} \right|_{h} = \max$$

Para um dado h, portanto V_p / i , qual o V_{ac} que maximiza a sensibilidade do espectrômetro?



Tarefas da semana

- Determinar a fórmula do seu filtro de Wien
- Testar seu filtro de Wien em várias condições U_{ac} , V_p , i. Testar seu modelo. Verifique se a razão "k" = 1.
- Estudar $h \times U_{ac}$ para três V_p diferentes:
 - a) Fixar uma razão V_p/i . (Exemplo: Usar o valor que fornece h=0 para U_{ac} = 600 V)
 - b) Graficar h em função de U_{ac} , variando U_{ac} em torno do valor escolhido, (Exemplo, de 300 a 900 V) mantendo fixos V_p e i.
 - c) Repetir (b) para um novo par V_p e i, com a condição de não alterar V_p/i . (Note que apesar de V_p/i = cte, as curvas não coincidem).
 - d) Sobrepor as três curvas no mesmo sistema de eixos. Note que as curvas se cruzam em (h, U_{ac}) escolhidos no ítem (a).
- Determinar a condição de resolução máxima. Quais seriam os possíveis limites para se construir um espectrômetro "ótimo"?