4300372	
431111317	
1300312	

21 de julho de 2011

D	
Γ	rec

Eletromagnetismo

Nome:	$n^{\underline{o}}$ USP				

- 1-(1.5) Um condutor esférico de raio R, carregado com carga +q, está envolto por dois dielétricos situados nas regiões R < r < a e a < r < b de permitividades ϵ_1 e ϵ_2 respectivamente. Determine:
 - ullet (0.5) a) os vetores densidade de fluxo elétrico, campo elétrico e polarização na região R < r < a;
 - (1.0) b) as densidades de carga de polarização nas superfícies r=a e r=b.

2-(3.0)O campo elétrico de uma onda eletromagnética propagando-se num meio de permitividade $4\epsilon_o$ e permeabilidade μ_o é dado por

$$\vec{E} = \cos(kx - \omega t) \vec{a}_y + 3 \sin(kx - \omega t) \vec{a}_z$$

Determine:

 $\bullet \ (0.5 \ a)$ o valor numérico para a velocidade de propagaçãøda onda;

As respostas para as questões abaixo só podem ficar em função de μ_o .

- (1.0) b) a expressão para o campo magnético \vec{B} da onda;
- (0.5) c) o vetor de Poynting e a intensidade média da onda;
- (0.5) d) o estado de porização da onda. Justifique.

- 3-(1.5) Uma fonte puntiforme de $10\,kw$ emite ondas eletromagnéticas que incidem perpendicularmente em um disco de $3\,cm^2$ de área, cujo coeficiente de absorção é 0.5, localizado a $\frac{50}{\sqrt{\pi}}\,cm$ da fonte. Determine:
 - \bullet (1.0) a) a quantidade de movimento transferida ao disco;
 - $\bullet \ (0.5)$ b) a pressão da radiação sobre o disco.

- **4** (1.5) Uma rêde de difração é iluminada por uma fonte de luz que emite comprimentos de onda de $600\,nm$ e $600,012\,nm$. A distância entre as fendas é de $30\,\mu m$ e a largura da fenda é $3\,\mu m$. Determine:
 - (0.5) a) o poder de resolução e o número de linhas necessário para separar em quarta ordem os dois comprimentos de onda da fonte.

Considere, agora, apenas o comprimento de onda de $600\,nm$ e determine :

• (1.0) b) a posição angular ($sen \theta$) dos máximos e mínimos de difração de uma única fenda possíveis de se observar.

- 5-(2.0) Duas fendas separadas pela distância de $1.5\,\mu m\,$ são iluminadas uniformemente por luz de comprimento de onda $600\,nm$. Um anteparo de $2\sqrt{3}\,m\,$ de altura está a uma distância de $1\,m\,$ das fendas.
 - \bullet (1.0) a) Quantos e quais máximos serão observados no anteparo ?
 - \bullet (0.5) b) Qual a distância entre o segundo mínimo e o máximo central?
 - \bullet (0.5) c) Qual a relação entre os máximos de terceira e quinta ordem?

Formulário

$$\vec{D} = \epsilon_{o} \vec{E} + \vec{P} \qquad \vec{B} = \mu_{o} \vec{H} + \vec{M} \qquad \vec{D} = \epsilon \vec{E} \qquad \vec{B} = \mu \vec{H}$$

$$\nabla \cdot \vec{D} = \rho \qquad \nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{D} = \frac{\partial D_{x}}{\partial x} + \frac{\partial D_{y}}{\partial y} + \frac{\partial D_{z}}{\partial z}$$

$$\nabla \cdot \vec{D} = \frac{1}{r} \frac{\partial}{\partial r} (r D_{r}) + \frac{1}{r} \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_{z}}{\partial z} \text{ (coord. cilíndricas)}$$

$$\nabla \times \vec{H} = \left(\frac{\partial H_{z}}{\partial y} - \frac{\partial H_{y}}{\partial z}\right) \vec{i} + \left(\frac{\partial H_{x}}{\partial z} - \frac{\partial H_{z}}{\partial x}\right) \vec{j} + \left(\frac{\partial H_{y}}{\partial x} - \frac{\partial H_{x}}{\partial y}\right) \vec{k}$$

$$\nabla \times \vec{H} = \left(\frac{1}{r} \frac{\partial H_{z}}{\partial \phi} - \frac{\partial H_{\phi}}{\partial z}\right) \vec{a}_{r} + \left(\frac{\partial H_{r}}{\partial z} - \frac{\partial H_{z}}{\partial r}\right) \vec{a}_{\phi} + \frac{1}{r} \left(\frac{\partial (r H_{\phi})}{\partial r} - \frac{\partial H_{r}}{\partial \phi}\right) \vec{a}_{z} \text{ (coord. cilíndricas)}$$

$$\vec{k} \times \vec{E} = \omega \vec{B} \qquad \vec{S} = \frac{1}{\mu_{o}} \vec{E} \times \vec{B} \qquad P = f_{a} \stackrel{\langle S \rangle}{c} + 2f_{r} \stackrel{\langle S \rangle}{c} \qquad E_{o} = cB_{o}$$

$$\langle p \rangle = f_{a} \stackrel{\langle U \rangle}{c} + 2f_{r} \stackrel{\langle U \rangle}{c} \qquad P_{ot} = \int \vec{S} \cdot d\vec{A} \qquad I = I_{o} \cos^{2} \theta$$

 $D_{1n} = D_{2n}$ $E_{1t} = E_{2t}$ $B_{1n} = B_{2n}$ $H_{1t} = H_{2t}$

Interferência

$$m\lambda = d \operatorname{sen} \theta$$
 $(m + \frac{1}{2})\lambda = d \operatorname{sen} \theta$

$$I = 4 I_o \cos^2\left(\frac{\pi d \sin \theta}{\lambda}\right)$$

Película

$$2nt = (m + \frac{1}{2})\lambda$$

$$2nt = m\lambda$$

$$d\cos\theta_t = (2m + 1)\frac{\lambda_t}{4}$$

$$d\cos\theta_t = m\frac{\lambda_t}{2}$$

Difração

$$sen \theta = 1.22 \frac{\lambda}{a}$$

$$m\lambda = a \operatorname{sen} \theta (m + \frac{1}{2})\lambda = a \operatorname{sen} \theta$$

$$I = I_o \left(\frac{sen \frac{\pi a sen \theta}{\lambda}}{\frac{\pi a sen \theta}{\lambda}} \right)^2$$

Rêde de difração

$$m\lambda = d \operatorname{sen} \theta$$
 $(m + \frac{1}{2})\lambda = d \operatorname{sen} \theta$
 $R = \frac{\lambda_m}{\lambda_2 - \lambda_1} = \frac{\lambda_m}{\Delta \lambda}$ $R = m N$