Prática 8 - INTERFERÊNCIA E DIFRAÇÃO DA LUZ

1. OBJETIVOS: determinar as larguras das fendas num experimento de fenda única, empregar o princípio de Babinet a um fio e obter as distâncias entre as fendas num experimento de fenda dupla.

2. INTRODUÇÃO

A) Difração da luz numa fenda única: localização dos mínimos

A passagem de um feixe de luz por uma fenda estreita ou um obstáculo cujas dimensões são próximas ao comprimento de onda, produz um espalhamento em relação à direção inicial de propagação. A onda plana da luz incidente torna-se esférica. Esse fenômeno, denominado difração, pode ser explicado pelo princípio de Huygens, segundo o qual, os pontos de uma frente de onda funcionam como fontes secundárias pontuais. Assim, para um feixe de luz monocromática, de comprimento de onda λ , atravessando uma fenda única de largura a, uma figura de difração pode ser observada sobre um anteparo localizado a uma distância D dessa fenda (ver figura 1 abaixo). Fazendo D muito maior que a (D >> a), podese considerar então todos os raios partindo da fenda com sendo paralelos e, assim, a localização dos mínimos de difração (franjas escuras), sobre tal anteparo, pode facilmente ser determinada através da seguinte equação:

$$asen\theta = m\lambda$$
, $para m = 1, 2, 3, ...$ (localização dos mínimos - franjas escuras) (1).

No caso de um orifício circular de diâmetro *a*, a figura de difração consiste em um ponto central mais intenso (máximo central) e de anéis luminosos concêntricos, alternados por anéis escuros. A localização desses anéis não pode ser obtida analiticamente. Para o primeiro anel escuro, o resultado da solução numérica é:

$$asen\theta = 1,22\lambda$$
 (localização do 1º mínimo) (2).

Orifícios com diâmetro muito próximo ao comprimento de onda não produzem um anel escuro, e a luminosidade do máximo central é espalhada sobre todo o anteparo.

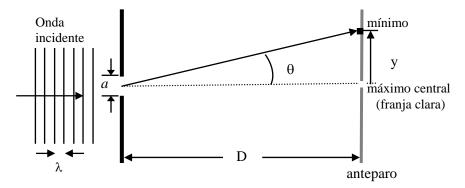


Figura 1: Difração em fenda única.

Como os ângulos θ são muito pequenos, pois D >> a, então $tg\theta \cong sen\theta \cong \theta$. Com isto a eq. (1) pode ser escrita numa forma mais simplificada, ou seja:

$$tg\theta = \frac{y}{D} \cong \theta \quad \text{e} \quad sen\theta = \frac{m\lambda}{a} \cong \theta \quad \Rightarrow \quad a = \frac{m\lambda D}{y}$$
 (3).

A análise acima aplica se também para a equação (2). Note que a eq. (3) fornece uma maneira fácil de obter a largura de uma fenda ou a espessura de um fio muito fino.

B) Interferência e difração da luz numa fenda dupla: localização dos máximos

Vimos, da seção anterior, que um feixe de luz monocromática de comprimento de onda λ , atravessando um orifício, gera sobre um anteparo uma figura de difração, caracterizada por franjas claras e escuras bem definidas. Quando dois orifícios são justapostos a luz difratada por cada orifício se sobrepõe (se interferem) na região entre esses orifícios e o anteparo, produzindo, assim, no anteparo uma figura de interferência, também caracterizada por franjas claras e escuras bem definidas. Um exemplo de dois orifícios justapostos é o caso da fenda dupla (ver figura 2 abaixo).

Em 1801, Thomas Young descreveu um método de determinar a localização dos máximos numa figura de interferência, ou seja, as franjas claras (interferência construtiva), numa experiência de fenda dupla. Chamando de d a distância entre as fendas, D a distância da fenda ao anteparo, θ o ângulo definido na figura 2 e fazendo D >> d, Young chegou numa equação para localização dos máximos de interferência dada por:

$$dsen\theta = m\lambda$$
, $para m = 0, 1, 2, 3, ...$ (localização das franjas claras de interferência) (4).

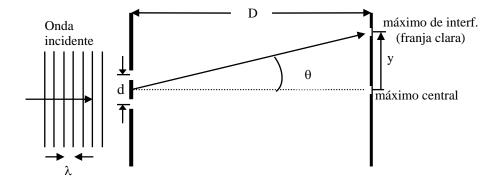


Figura 2: Interferência e difração numa fenda dupla de distância d entre as fendas.

Como os ângulos θ são muito pequenos, pois D >> a, então $tg\theta \cong sen\theta \cong \theta$. Com isto a eq. (4) pode ser escrita numa forma mais simplificada, ou seja:

$$tg\theta = \frac{y}{D} \cong \theta \quad \text{e} \quad sen\theta = \frac{m\lambda}{d} \cong \theta \quad \Rightarrow \quad d = \frac{m\lambda D}{v}$$
 (5).

Para dois máximos consecutivos, a eq. (5) pode ser reescrita da seguinte forma: $d = \frac{\lambda D}{\Delta y}$ (6),

sendo $\Delta y = y_{m+1} - y_m$ a distância entre dois máximos consecutivos.

Note que tanto a eq. (5) quanto a eq. (6) fornecem uma maneira fácil de determinar a distância entre as fendas.

3. PROCEDIMENTO: seções A e B

- A1) Fazendo-se incidir luz sobre uma barreira com fenda única, de uma fonte laser, mede-se as posições (y) dos mínimos (franjas escuras) na figura de difração projetada no anteparo. Para fenda retangular a equação (3) fornece o valor médio da largura dessa fenda. Para fendas circulares e pequenos valores de θ a distância entre o máximo central e o primeiro mínimo é y = 1,22λD/a. Desse modo, pode-se calcular o valor médio do diâmetro da fenda.
- **A2)** Aplicando-se o princípio de Babinet, segundo o qual, um fio na mesma espessura da fenda interceptando o feixe de luz produz o mesmo efeito, obtém-se o diâmetro do fio
- B) Fazendo-se incidir luz de uma fonte laser sobre uma barreira com fenda dupla, mede-se as posições (y) dos máximos da figura projetada no anteparo. O anteparo pode ser uma folha de papel sulfite branco onde, com um lápis, são marcadas as posições dos máximos de interferência. Emprega-se então a eq. (5) ou (6) para calcular o valor médio da distância entre as fendas. Como o primeiro mínimo de difração é também visível, usando o mesmo método, pode-se estimar a largura da fenda.

MEDIDAS: DIFRAÇÃO EM FENDA ÚNICA E INTERFERÊNCIA E DIFRAÇÃO EM FENDA DUPLA Parte A1) Difração da luz em fenda única retangular.

Diagrama do máximo central e dos três mínimos consecutivos (traçar aqui os diagramas para as fendas 1 e 2)				
Fenda 1	Fenda 2			

	Fenda 1		Fenda 2		
m	y (mm)	a (mm)	y (mm)	a (mm)	
1					
2					
3					
Valores médios (\overline{a})		\overline{a} =		\overline{a} =	

Expressão de cálculos e resultados:

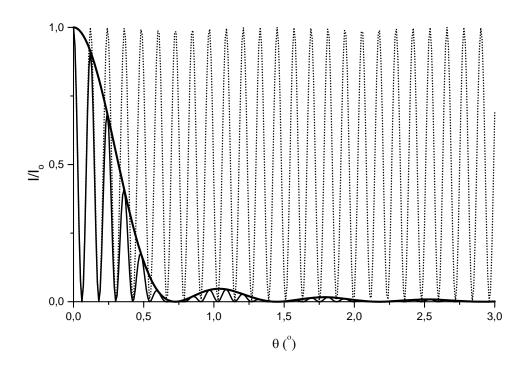
Parte A1) Difração da luz numa fenda única circular.

Diagrama do máximo central e do 1º mínimo.

Expressão de cálculo: $a = 1,22 \frac{\lambda D}{V}$ (primeiro mínimo)

Parte B) Interferência e difração numa fenda dupla.

Diagrama do máximo central e dos três máximos consecutivos (traçar aqui os diagramas para as fendas 1 e 2)				
Fenda 1: Fenda 2:				


	Fenda 1		Fenda 2			
m	y (mm) ou	∆y (mm)	d (mm)	y (mm) ou	∆y (mm)	d (mm)
1						
2						
3						
Valores m	édios (\overline{d})		\overline{d} =			\overline{d} =

Expressão de cálculo:
$$d = \frac{m\lambda D}{y}$$
 ou $d = \frac{\lambda D}{\Delta y}$

Resultados:

4. EXEMPLO

Seja $\lambda = 6328$ Å, d = 0.30 mm e a = 0.050 mm. A figura abaixo mostra a variação dos dois fatores e o efeito resultante.

