ROTEIRO DO EXPERIMENTO

30 de janeiro de 2023

1 Roteiro

1.1 Aquisição de dados:

- 1. 1. Ligue a chave geral da fonte de alimentação que fica atrás da fonte.
- 2. Ligue o computador.
- 3. Clique no ícone *FHLab*. Ao clicar nesse ícone deve aparecer uma tela como a mostrada na Fig.1.1 (esquerda) abaixo.
- 4. Escolha uma porta de conexão na parte inferior da tela do programa FHLab. Normalmente é a de maior número.
- 5. No canto superior esquerdo da tela introduza um valor de temperatura para o tubo de Franck-Hertz. Com exceção do equipamento 4, cuja temperatura recomendada é de $160^{\circ}C$, os demais equipamentos recomenda-se a temperatura de $180^{\circ}C$.
- 6. Introduza um potencial de aceleração V_A de aproximadamente 40 V.
- 7. 7. Introduza um potencial de retardo V_R de aproximadamente 2 V.
- 8. Coloque um ganho de 80%.
- 9. Clique no ícone *Filamento* para energizar o filamento do tubo de Franck-Hertz.
- 10. Ao introduzir todos os parâmetros de configuração do equipamento de Franck-Hertz, a tela do programa deve ter a aparência da mostrada na Fig.1.1 (direita).
- 11. Quando a temperatura estiver oscilando em torno do valor introduzido no ícone Ajuste de Temperatura, clique no ícone Iniciar. Ao acionar esse ícone, a curva de Franck-Hertz começará a ser escaneada. Quando o potencial de aceleração estiver próximo dos 40 V o escaneamento deve parar automaticamente, se isto não acontecer, clique no ícone Parar. Obs: Pode ser que aconteça a ionização do gás no interior do tubo de Franck-Hertz. Caso isto aconteça, a corrente no ânodo deve crescer rapidamente atingindo a saturação. Se a quantidade de picos produzida for muito pequena (< 5), então aumente a temperatura do equipamento para que a ionização não atrapalhe o surgimento dos picos. Normalmente a quantidade de picos obtidos nesses equipamentos é em torno de 7-8.
- 12. Salve o arquivo com a extensão E_1_180_1. Onde E_1 significa equipamento 1, 180 é a temperatura introduzida no equipamento e 1 representa a primeira aquisição. Após salvar, clique no ícone *Limpar* e faça uma nova aquisição.
- 13. Faça um total de 2 aquisições e salve cada uma delas.
- 14. Após fazer todas as aquisições clique no botão Sair.
- 15. Desligue a fonte de alimentação.

Figura 1.1: A esquerda, fotografia da tela do programa *FHLab* antes da configuração do sistema. A direita, fotografia da tela do programa *FHLab* depois da configuração do sistema.

Figura 2.1: A esquerda, fotografia da tela do programa Origin após importação de dados. A direita, fotografia da tela do programa Origin com a tabela de dados e o gráfico da coluna.

2 Programa Origin

 Carregue o programa Origin e faça a importação dos dados para o programa (veja o vídeo Tratamento de dados (https://fap.if.usp.br/~jhsevero/Fisica_Experimental_C_Quadrimestral_2023/resources/Franck-Hertz/Videos/Tratamento-de-dados.mp4) para ver a forma correta de importar e tratar os dados). Ao fazer a importação dos dados você deve observar uma tela como a mostrada nas Fig.2.1 (esquerda) e Fig.2.2 (direita).

3 Dados

1. Assista o vídeo Tratamento dos Dados para ver a forma correta de tratar os dados:(https://fap.if.usp.br/~jhsever Hertz/Videos/Tratamento-de-dados.mp4).

3.1 Tratamento de dados:

2. Faça um gráfico $I(V_A)$ e enumere os picos corretamente como mostrado na Fig.3.1. O resultado da menor energia de excitação do Hg E_A dependerá da enumeração. Ao atribuir o índice n = 1, 2, ... a cada um dos picos, você pode não ter sido capaz de ver o primeiro pico, mas usando a expressão $n \leq VA/4, 86$ você pode deduzir o valor correto para n. Lembre-se ainda que o primeiro pico deve aparecer para o

Figura 3.1: Gráfico do potencial de aceleração pela corrente no anodo com os picos enumerados.

potencial de aceleração da ordem de 5 + 2 = 7V onde esse 2V é devido a função trabalho do material do qual é feito o cátodo. Esse gráfico deve ir para o relatório.

3.2 Determinação da posição dos picos:

- 3. Para determinar a posição dos picos e vales com precisão, primeiramente faça um ajuste parabólico na curva da Fig.3.1 para subtrair a tendência de crescimento. Com o resíduo do ajuste, faça um ajuste não linear gaussiano do tipo, y (x) = y₀ + A/w(√π/2) exp [-2((x-x_C/w))²] em torno do pico ou vale. Neste caso, a posição do máximo será determinado pelo valor da variável x_C do ajuste. Aconselha-se que você assista o video Tratamento dos Dados ((https://fap.if.usp.br/~jhsevero/Fisica_Experiment Hertz/Videos/Tratamento-de-dados.mp4)) antes de iniciar os ajustes.
- 4. Faça uma tabela, como a representada abaixo (Tab.1), indicando a ordem dos picos, a posição dos máximos, a diferença de potencial entre máximos consecutivos e a incerteza. Repita essa mesma operação para os vales. Faça a tabela para as 2 aquisições e coloque os valores com apenas duas casas decimais.

Temperatura $(180, 1 \pm 0, 3)^{o} C$				Temperatura $(180, 1 \pm 0, 3)^{o} C$			
Ordem	Potencial	Diferença	Incerteza	Ordem	Potencial	Diferença	Incerteza
dos picos	associado	de potencial	[V]	dos vales	associado	de potencial	[V]
	ao pico [V]	entre os			ao vale [V]	entre os	
		picos [V]				picos [V]	
1	7,07	4,02	0,03	1	8,7	4,59	0,02
2	11,92	4,81	0,10	2	14,56	4,87	0,04
3	16,73	5,02	0,07	3	19,43	4,92	0,02
4	21,75	4,81	0,08	4	24,35	4,97	0,02
5	$26,\!56$	5,02	0,05	5	29,32	5,07	0,02
6	$31,\!58$	5,02	0,10	6	34,38	$5,\!16$	0,01
7	$36,\!60$			7	39,54		

Tabela 1- Potencial, diferença de potencial entre picos e vales consecutivos e incertezas associadas aos picos e vales para a primeira aquisição.

Temperatura $(180, 1 \pm 0, 3)^o C$				Temperatura $(180, 1 \pm 0, 3)^{o} C$			
Ordem	Potencial	Diferença	Incerteza	Ordem	Potencial	Diferença	Incerteza
dos picos	associado	de potencial	[V]	dos vales	associado	de potencial	$[\mathbf{V}]$
	ao pico [V]	entre os			ao vale [V]	entre os	
		picos [V]				picos [V]	
1	7,07	4,02	0,03	1	8,7	4,59	0,02
2	11,92	4,81	0,10	2	$14,\!56$	4,87	0,04
3	16,73	5,02	0,07	3	19,43	4,92	0,02
4	21,75	4,81	0,08	4	$24,\!35$	4,97	0,02
5	$26,\!56$	5,02	0,05	5	29,32	5,07	0,02
6	$31,\!58$	5,02	0,10	6	34,38	5,16	0,01
7	$36,\!60$			7	$39,\!54$		

Tabela 2- Potencial, diferença de potencial entre picos e vales consecutivos e incertezas associadas aos picos e vales para a segunda aquisição.

5. Construa um gráfico da ordem dos picos pela diferença de energia entre dois picos consecutivos $(\Delta E_n(n))$. Repita o gráfico para os vales. Faça isto para as 2 aquisições. Faça um ajuste linear dos pontos para cada caso (pico e vale), como mostrado nas Fig.3.2 e Fig.3.3 abaixo.

Figura 3.2: A esquerda, ajuste linear da diferença de energia entre dois picos consecutivos pela ordem dos picos referente a primeira aquisição. A direita, ajuste linear da diferença de energia entre dois vales consecutivos pela ordem dos vales referente a primeira aquisição.

Figura 3.3: A esquerda, ajuste linear da diferença de energia entre dois picos consecutivos pela ordem dos picos referente a segunda aquisição. A direita, ajuste linear da diferença de energia entre dois vales consecutivos pela ordem dos vales referente a segunda aquisição.

- 6. A partir dos coeficientes das retas ajustadas para os picos e vales, determine a menor energia de excitação E_A , (caso tenha dúvidas de como calcular essa energia assista ao video 5D) o livre caminho médio λ e a seção de choque σ . Para calcular o livre caminho médio e a seção de choque, utilize o formulário que está logo abaixo:
- 7. Livre caminho médio:

$$\lambda = \frac{L}{2E_A} \frac{d}{dn} \Delta E(n) \,,$$

onde L = 8 mm é a distância entre o cátodo e a grade e $\frac{d}{dn}\Delta E(n)$ é a inclinação da reta ajustada no gráfico acima.

- 8. Seção de choque:
- 9. Pressão:

$$p = 8.7.10^{\left(10, 5 - \frac{3110}{T}\right)}$$

 $\sigma = \frac{k_B T}{n\lambda}$

- 10. Coloque seus dados em uma tabela como a representada abaixo (Tab.3).
 - Obs: não esqueça de colocar as incertezas na energia de excitação.

Temperatura [°C]	Energia de excitação (picos) [eV]	Energia de excitação (vales) [eV]	Livre caminho médio (picos) [m]	Seção de choque $(picos)$ $[m^2]$	Livre caminho médio (vales) [m]	Seção de choque (vales) $[m^2]$
182 ± 5	$4,55\pm0,12$	$4,72\pm0,03$	$(103, 0).10^{-6}$	$(0,2).10^{-20}$	$(66, 0).10^{-6}$	$(0,4).10^{-20}$
182 ± 5	$4,43\pm0,09$	$4,72\pm0,01$	$(84, 7).10^{-6}$	$(0,3).10^{-20}$	$(68, 3).10^{-6}$	$(0,1).10^{-20}$

Tabela 3- Energia mínima de excitação, livre caminho médio e seção de choque para picos e vales, para as duas aquisições.

11. Calcule o valor médio das grandezas encontradas (energia, livre caminho médio e seção de choque) entre os picos e vales e os devidos desvios padrões. Insira os dados obtidos na Tab.4 como a representada abaixo. Coloque também o valor teórico esperado de cada grandeza.

• Obs: Os valores teóricos para as grandezas energia de excitação do mercúrio, livre caminho médio e seção de choque são os seguintes:

$$\begin{array}{rcl} E_a &=& 4,67eV\\ \sigma_T &=& 0,5.10^{-20}m^2\\ \lambda &=& \frac{k_BT}{p.\sigma_T} = \frac{1,38.10^{-23}T}{8.7.10^{(10,5-3110/T)}0.5.10^{-20}} \end{array}$$

onde T é a temperatura média entre todas as aquisições.

- 12. Calcule a incerteza no valor médio da energia de excitação pela média simples das incertezas das energias obtidas para os picos e vales nas 2 aquisições ($\sigma_{E_A} = \frac{1}{n} \left[(\sigma_{E_A,P_1}) + (\sigma_{E_A,P_2}) + (\sigma_{E_A,V_1}) + (\sigma_{E_A,V_2}) \right]$).
 - Obs: Os valores médios e incertezas nos valores do livre caminho médio e seção de choque podem ser calculados no Origin da mesma forma que foi calculada a temperatura média e a sua incerteza.

Temperatura [°C]	Energia de excitação (valor médio) [eV]	Energia de excitação (valor esperado) [eV]	Livre caminho médio (valor médio) [m]	Livre caminho médio (valor esperado) [m]	Seção de choque (valor médio) $[m^2]$	Seção de choque (valor esperado) $[m^2]$
182 ± 5	$4,64\pm0,04$	4,67	$(85\pm 6).10^{-6}$	$31,078.10^{-6}$	$(0, 22 \pm 0, 10).10^{-20}$	$0, 5.10^{-20}$

Tabela 4 - Valores médios e esperados para a energia mínima de excitação do mercúrio, livre caminho médio e seção de choque.