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Together with my partner, Pablo Solis, we demonstrate the particle-like nature of light as charac-
terized by photons with quantized and distinct energies each dependent only on its frequency (ν) and
scaled by Planck’s constant (h). Using data obtained through the bombardment of an alkali metal
surface (in our case, potassium) by light of varying frequencies, we calculate Planck’s constant, h
to be 1.92 × 10−15

± 1.08 × 10−15eV · s.

1. THEORY AND MOTIVATION

It was discovered by Heinrich Hertz that light incident
upon a matter target caused the emission of electrons
from the target. The effect was termed the Hertz Effect
(and later the Photoelectric Effect) and the electrons re-
ferred to as photoelectrons. It was understood that the
electrons were able to absorb the energy of the incident
light and escape from the coulomb potential that bound
it to the nucleus.

According to classical wave theory, the energy of a
light wave is proportional to the intensity of the light
beam only. Therefore, varying the frequency of the light
should have no effect on the number and energy of resul-
tant photoelectrons. We hope to disprove this classical
hypothesis through experimentation, by demonstrating
that the energy of light does indeed depend on the fre-
quency of light, and that this dependence is linear with
Planck’s constant h as the constant of proportionality.

2. HYPOTHESIS

Light comes in discrete packets, called photons, each
with an energy proportional to its frequency.

E = hν (1)

For each metal, there exists a minimum binding energy
for an electron characteristic of the element, also called
the work function (W0). When a photon strikes a bound
electron, it transfers its energy to the electron. If this
energy is less than the metal’s work function, the photon
is re-emitted and no electrons are liberated. If this energy
is greater than an electron’s binding energy, the electron
escapes from the metal with a kinetic energy equal to
the difference between the photon’s original energy and
the electron’s binding energy (by conservation of energy).
Therefore, the maximum kinetic energy of any liberated
electron is equal to the energy of the photon less the
minimum binding energy (the work function). Expressed
concisely the relationship is as such:

Kmax = hν − W0 (2)
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This maximum kinetic energy can be determined by
applying a retarding potential (Vr) across a vacuum gap
in a circuit with an amp meter. On one side of this gap
is the photoelectron emitter, a metal with work function
W0. We let light of different frequencies strike this emit-
ter. When eVr = Kmax we will cease to see any current
through the circuit. By finding this voltage we calculate
the maximum kinetic energy of the electrons emitted as a
function of radiation frequency. This relationship (with
some variation due to error) should model Equation 2
above.

3. EXPERIMENTAL SETUP

3.1. Schematic

FIG. 1: Schematic of experimental setup with retarding volt-
age applied. Photons are incident on the photocathode and
travel toward the anode to complete the circuit unless stopped
by a high enough applied voltage.

3.2. Apparatus

Our monochromatic light source was an Oriel 65130
Mercury Lamp in combination with a narrow band pass
filter wheel with four different wavelength passbands.
The wavelengths are listed in Table I.
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Wavelengths (nm)

365.0 ± 2.0

404.7 ± 2.0

546.1 ± 2.0

577.0 ± 2.0

TABLE I: Spectrum from Oriel mercury lamp.

A Leybold photocell served as our target, containing a
potassium (W0 = 2.3eV ) photosurface as the cathode
and a platinum ring (Wa = 5.7eV ) as the anode sepa-
rated by a vacuum. It was enclosed in a black box with
a small circular opening to allow for incoming light. Pre-
cautions were taken to shield the setup from ambient
light, to protect the filters and photocell from overheat-
ing, and to minimize illumination of the anode.

4. DATA AND ANALYSIS

An example of our tabulated raw data is shown in Ta-
ble II for the 365.0 nm wavelength over five trials.

The normalized currents for each wavelength are plot-
ted against their respective retarding voltages in Figure
2 with the standard deviations as error bars. The nor-
malization removes the scaling effects of the non-uniform
distribution of intensities across the spectrum of our light
source. With intensity normalized away, it is already ev-
ident from this figure that the cut-off voltages have some
dependence on frequency.
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FIG. 2: Plot of photocurrent as a function of the magnitude of
retarding voltage applied for each wavelength of incident light.
Normalized to the zero-voltage point of the lowest intensity
wavelength.

A back current was a noticeable effect for several wave-
lengths. Back current is caused by photoelectrons liber-
ated from the platinum anode as a result of scattered

light. Its effects become most prominent when the re-
tarding voltage is high. The retarding voltage is seen as
an accelerating voltage by these electrons and they travel
uninhibited from the anode to the cathode, opposite the
direction of the expected flow.

Another feature that should not be neglected is the
non-linear nature of the photocurrent vs. voltage curve
near the stopping voltage. Theoretically, at the stopping
voltage, we expect the current to be zero. However, as
we decrease the stopping voltage, the current rises only
very slowly until it begins to take on a familiar I = αVr

linear form. This is to be expected since the number
of states with energy near the minimum binding energy
N(E ≈ −W0) may in fact be very small, and increases
as the binding energy increases.

Complicating effects such as the two represented above
compromise the reliability of zero-current crossings for
determination of stopping voltages. Instead, we look to
two different methods for extrapolating the data points
of interest. Any differences in results will be used in
calculation of a lower bound on our systematic error.

4.1. Method One for Voltage Cut-Off

Determination: Linear Fit Method
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Demonstration of the Linear Fit Method of Stopping Voltage Approximation

y = mx + b      
m = −60.0 +− 5.1
b = 35.6 +− 1.5 
X2 = 1.9       

y = mx + b     
m = 0.0 +− 3.5 
b = −0.3 +− 6.4
X2 = 0        

(V
r
 = 0.6V ,I = −0.3pA)

Measured Values (I vs. V
r
) for 404.7nm Photons

Low Voltage Best Fit Line
High Voltage Best Fit Line
Extrapolated Zero−Point

FIG. 3: Graphical demonstration of the High and Low Voltage
Linear Fit Method of stopping voltage determination. Calcu-
lations based on the normalized data points with error for
404.7 nm wavelength light.

Since the asymptotic behavior of each curve at both
low and high values of retarding voltages (discounting
saturation) is linear, both sections can be fit to sepa-
rate linear regressions. The criteria for determining how
many data points to fit on each end was simple: mini-
mum number of points required for a meaningful fit while
maintaining a reasonable χ2. A linear fit should involve
greater than two points but maintain a χ2 of less than
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λ = 365.0 nm ± 2 nm

Voltage (V ± 0.1V) Current (pA ± 1pA) - All Trials Statistical Analysis

All Trials Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean Var. Std. Dev.

0 416 416 420 420 422 418.8 5.76 2.40

0.2 298 300 301 301 304 300.8 3.76 1.94

0.4 202 200 203 203 205 202.6 2.64 1.62

0.6 126 125 127 127 129 126.8 1.76 1.33

0.8 70 70 71 71 73 71 1.2 1.10

1 34 34 36 36 37 35.4 1.44 1.20

1.2 13 13 16 16 17 15 2.8 1.67

1.4 1 1 3 3 4 2.4 1.44 1.20

1.6 -4 -4 -2 -2 -1 -2.6 1.44 1.20

1.8 -7 -7 -5 -5 -4 -5.6 1.44 1.20

2 -8 -8 -6 -6 -6 -6.8 0.96 0.98

TABLE II: Raw data table for 365.0nm wavelength light. Statistical data is provided on the right. Standard deviations from
these measurements were used as a primary measure of random error.

100. Therefore three data points were chosen on each
end of the data set for their respective regressions.

The intersection of these two theoretical fits is a point
(Vs, I0). Vs is an estimate for the stopping voltage extrap-
olated from the two linear relations and I0 the baseline
current. Performing this analysis on all four sets of data,
we obtain the results tabulated below:

Wavelength (λ) St. Voltage (Vs) Error (σVs
) Relative Error

365.0 nm 0.76 V 0.16 V 21.6%

404.7 nm 0.60 V 0.12 V 20.1%

546.1 nm 0.44 V 0.09 V 20.2%

577.0 nm 0.44 V 0.09 V 20.3%

TABLE III: Obtained by the Linear Fit Method, we find a
linear dependence of stopping voltage values on wavelength
of light.

Since equation 2 can be written as,

Kmax = eVs = hν − W0, (3)

We can divide by e and rewrite the equation in units
of electron-Volts (eV).

Kmax[in eV ] = Vs = (h/e)ν − W0[in eV ] (4)

Figure 5 shows a plot of the maximum determined ki-
netic energy (in electron-Volts) of photoelectrons as a
function of the frequency of light (in Hz). The linear
regression shows the best fit line through this set of re-
duced data points. The slope of this line corresponds to
the value of Planck’s constant h in eV · s.

This method yields a value for h of (9.4 ± 4.8) ×
10−16 eV · s.

FIG. 4: The derivative of the function Kmax(ν) gives us the
value for h/e. The χ2 for this fit is 0.21 due to the large error
bars.

4.2. Method Two for Voltage Cut-Off

Determination: Zero-Slope Method

Observing the qualitative character of the normalized
currents vs. voltages graphs one can conceive of a slightly
more direct way of accounting for the effects of back cur-
rent. If we treat (somewhat erroneously but reasonably)
the back current as a constant negative offset on the curve
in the high-voltage region of the data, where the current
should be zero, we can extrapolate the stopping voltage
to be the point at which the curve reaches a constant
value and does not change for any larger magnitude ap-
plied voltage.

We call this method the Zero-Slope or Point-Deviation
Method. It reads the data points for each wavelength
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from right to left and picks out the first point that devi-
ates from the flat-line end behavior and assigns that value
to be the stopping voltage for that particular wavelength.
We tested the precision of this method by setting differ-
ent threshold (minimum deviation) values and observing
any change in resulting data set. For a threshold be-
tween 0 and 0.5 this method yielded the exact same set
of points and values. Since this method relies on discrete
points, the ”real” value can fall anywhere between the
chosen value and the next points on either end, so we
estimated the error in stopping voltage to be about the
interval between successive data points.

FIG. 5: The graph of Kmax vs. ν for the data set determined
by using the Zero-Slope Method. The linear fit line has a χ2

value of 0.65.

Using this method of analysis, h was deter-

mined to be 2.9 × 10−15 ± 7.7 × 10−16 eV · s.

4.3. Combined Result

The combined result of the two analyses is an

average h value of 1.92 × 10−15 eV · s with a total

error of 1.08 × 10−15 eV · s. This will be derived and
elaborated upon in the next section.

5. ERROR CONTRIBUTIONS AND

CALCULATIONS

Incidentally, according to theory, the y-intercept of the
relation defined by Equation 4 should correspond to the
work function (W0) of potassium (2.3 eV). However, we
see that this is not nearly the case. More subtle forces
are at play which contribute to the disparity between
theoretical predictions and actual results.

The applied voltage difference between the cathode
and the anode metals is not the voltage difference that
an electron ”sees” as it is traveling between them. Fol-
lowing the argument presented by Melissinos [1], energy
loss around a closed circuit loop must be zero with no

dissipative elements. Thus, the electron sees not the ap-
plied voltage V’ but a voltage V adjusted by the work
functions of the two metals. An illustration (Figure 6)
from the same source [1] pg. 20 helps facilitate the ex-
planation.

FIG. 6: The actual voltage overcome by the electron in its
journey is V = V ′

− (φa − φc). Here, φa = Wa and φc = W0.

If we solve for the actual y-intercept in the relation-
ship we find it to be the work function of the anode (Wa)
instead of the cathode. However, this is still not well-
represented by the data. If our objective was to obtain
an accurate work function, we would need to change cer-
tain aspects of our experiment. We would want to use
purer metals as opposed to alloys. Care must be taken to
avoid cathode material deposition onto the anode. Mea-
surements should be extended until current saturation
(the voltage becomes an accelerating voltage) so we can
better define and correct for the back current effect.

In this case we’re mostly interested in the slope of the
relation between Kmax and ν for our value of h/e. The
two error contributions are systematic and random error.
The systematic error is set by the difference betweeen our
two methods of evaluating the cut-off voltage while the
random errors propagate through our analysis from their
origins in the measurements we took.

The random error in our raw data is determined ex-
perimentally through five independent trials 1 using the
formula for the square-root of the variance, σI .

σ2

I
=

1

5

5
∑

i=1

(Ii − 〈I〉)2 (5)

Any linear regression y = mx + b calculated from our
input variables and errors outputs an uncertainty on m
and on b. In the case of finding the intersection of two
linear regression lines y = m1x+b1 and y = m2x+b2, the
error propagation formula was used to derive the follow-
ing result for error on the X-coordinate of the intersection

1 These trials were assumed to be independent (measured from
low voltage to high voltage each time) but in some cases did not
match the statistical distribution for independent random error.
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point in 2-D space:

σ2

x =

(

1

m1 − m2

)2

σ2

b2
+

(

1

m1 − m2

)2

σ2

b1

+

(

b2 − b1

(m1 − m2)2

)2

σ2

m1
+

(

b2 − b1

(m1 − m2)2

)2

σ2

m2
(6)

When faced with two different calculated values for
Planck’s constant (h1 and h2), and their respective un-
certainties (σh1

and σh2
), we determined our final value

of h by taking the average,

h = h̄ =
h1 + h2

2
= 1.92 × 10−15eV · s (7)

and determined our random error on h, σhr
, by prop-

agating both uncertainties using the formula,

σ2

hr

=
1

4
σ2

h1
+

1

4
σ2

h2
= 2.12 × 10−31eV 2s2. (8)

The systematic error was estimated by the square-root
of the variance of h1 and h2 and determined to be 9.8 ×
10−16 eV · s.

The total error on h is a combination of random error
(σhr

) and systematic error (σhs
),

σ2

h = σ2

hs

+ σ2

hr

(9)

σh = 1.08 × 10−15 eV · s

6. CONCLUSIONS

Our experiment verified our hypothesis. We observed
light behave as if it were a particle (not a wave) in its in-

teraction with matter. We were able to demonstrate for
light the linear dependence of its energy on its wavelength
and determine to some accuracy the constant of propor-
tionality. The actual value of Planck’s constant fell out-
side of our errorbars, which is less than ideal. Our final
uncertainty on the value proved to be 50% of the value
itself. This is very large and makes the task of drawing
solid conclusions difficult.

Though we cannot necessarily reduce random errors,
we can seek to better characterize it in our experiments.
This can be accomplished through not only more re-
peated trials but especially more independent trials. If,
in the future, we attempt to reset the amp meter and
voltage supply for each trial or wait a longer period of
time between trials, we may find a more representative
variance in our measurements.

There are means, however, of reducing our systematic
error. In addition to the changes and improvements sug-
gested previously at the end of the discussion on work
functions, by simply taking more data points and ex-
tending our observations deeper into the high and low
voltage ends, we avail ourselves of more discriminating
information to adjust for our systematic error. Further-
more, the usage of a brighter source can offer us more
resolution on our curves and allow us to better identify
a cut-off voltage.

There are extensions on our experiment that may and
should be explored in the future. Changing other vari-
ables, including intensity and the cathode/anode work
function and observing its effects on the system, may
provide us with further and confirming evidence on the
particle nature of light.
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